【題目】已知橢圓:的左、右焦點分別為、,過的直線與橢圓相交于、兩點.
(1)求 的周長;
(2)設點為橢圓的上頂點,點在第一象限,點在線段上.若,求點的橫坐標;
(3)設直線不平行于坐標軸,點為點關于軸的對稱點,直線與軸交于點.求面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費及其構成,現(xiàn)有如下說法:
①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;
②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;
③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的.
則上述說法中,正確的個數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已如橢圓,四點中恰有三點在橢圓上.
(1)求橢圓C的方程;
(2)設不經(jīng)過左焦點的直線交橢圓于A,B兩點,若直線、、的斜率依次成等差數(shù)列,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓:的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)是否存在直線:與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工r產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.
在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.
據(jù)上述信息,下列結論中正確的是( ).
A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高
C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2002年在北京召開的國際數(shù)學家大會的會標是以我國古代數(shù)學家的弦圖為基礎設計的.弦圖是由四個全等的直角三角形與一個小正方形拼成的一個大正方形(如圖).設其中直角三角形中較小的銳角為,且,如果在弦圖內(nèi)隨機拋擲1000米黑芝麻(大小差別忽略不計),則落在小正方形內(nèi)的黑芝麻數(shù)大約為( )
A. 350B. 300C. 250D. 200
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,E為AD中點,F為CC1中點.
(1)求證:AD⊥D1F;
(2)求證:CE//平面AD1F;
(3)求AA1與平面AD1F成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
對變量t與y進行相關性檢驗,得知t與y之間具有線性相關關系.
(1)求y關于t的線性回歸方程;
(2)預測該地區(qū)2016年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com