已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1
(1)設(shè)集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4,},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域內(nèi)的隨機(jī)點(diǎn),求函數(shù)y=f(x)在[1,+∞)上是增函數(shù)的概率.
【答案】分析:(1)分a=1,2,3,4,5 這五種情況來(lái)研究a>0,且 ≤1的取法共有16種,而所有的取法共有6×6=36 種,從而求得所求事件的概率.
(2)由條件可得,實(shí)驗(yàn)的所有結(jié)果構(gòu)成的區(qū)域Q 的面積等于S△OMN==32,滿足條件的區(qū)域A的面積為
S△POM==,故所求的事件的概率為 P=,運(yùn)算求得結(jié)果.
解答:解:(1)由題意可得a>0,且 ≤1,所有的取法共有6×6=36 種.
當(dāng)a=1 時(shí),b 只能取-2,-1這兩個(gè)值.當(dāng)a=2 時(shí),b 只能取-2,-1,1 這三個(gè)值.
當(dāng)a=3 時(shí),b 只能取-2,-1,1 這三個(gè)值.當(dāng)a=4 時(shí),b 只能取-2,-1,1,2 這四個(gè)值.
當(dāng)a=5 時(shí),b 只能取-2,-1,1,2 這四個(gè)值.
故滿足函數(shù)y=f(x)在[1,+∞)上是增函數(shù)的取法有 2+3+3+4+4=16種,
故所求事件的概率為 =,故答案為:
(2)由條件可得,實(shí)驗(yàn)的所有結(jié)果構(gòu)成的區(qū)域?yàn)镼={(a,b)|  },如圖所示,
該區(qū)域?yàn)橐粋(gè)三角形區(qū)域,其面積等于S△OMN==32.
滿足函數(shù)y=f(x)在[1,+∞)上是增函數(shù)的基本事件構(gòu)成的區(qū)域?yàn)锳={(a,b)|  },
 求得交點(diǎn)的坐標(biāo)為P(,),故區(qū)域A的面積為 S△POM==,
故所求的事件的概率為 P===

點(diǎn)評(píng):本題考查等可能事件的概率,二次函數(shù)的單調(diào)區(qū)間以及簡(jiǎn)單的線性規(guī)劃問(wèn)題,畫(huà)出實(shí)驗(yàn)的所有結(jié)果構(gòu)成的區(qū)域Q
和區(qū)域A 的圖形,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在一個(gè)紅綠燈路口,紅燈、黃燈和綠燈的時(shí)間分別為30秒、5秒和40秒.當(dāng)你到達(dá)路口時(shí),求不是紅燈的概率.
(2)已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(Ⅰ)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[|m+n|2上是增函數(shù)的概率;
(Ⅱ)設(shè)點(diǎn)(
1
2
,|m+n|min=
2
2
)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求MD上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次不等式ax2+bx+c>0的解集為(-2,3),則關(guān)于x的不等式cx+b
x
+a<0的解集為
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•藍(lán)山縣模擬)已知關(guān)于x的一元二次不等式ax2+bx+c≥0在實(shí)數(shù)集上恒成立,且a<b,則T=
a+b+cb-a
的最小值為
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案