已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0的兩側(cè),則下列說法正確的序號是
③④
③④

①2a-3b+1>0
②a≠0時,
b
a
有最小值,無最大值
a>0且a≠1,b>0,
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞

④存在正實數(shù)M,使
a2+b2
>M
恒成立.
分析:由已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0的兩側(cè)可得2a-3b+1<0,結(jié)合不等式的性質(zhì)可得當a>0時,
b
a
2
3
+
1
3a
,從而對①②作出判斷;對于③,利用式子蘊含的斜率的幾何意義即可解決.對于④,是看
a2+b2
有沒有極小值,據(jù)
a2+b2
的幾何意義即可得出;
解答:解:①由已知(2a-3b+1)(2-0+1)<0,即2a-3b+1<0,∴①錯;
②當a>0時,由3b>2a+1,可得
b
a
2
3
+
1
3a
,∴不存在最小值,
∴②錯;
③∵
b
a-1
表示點(a,b)與點(1,0)連線的斜率,
如圖,由線性規(guī)劃知識可知,當a>0,b>0時,
b
a-1
的取值范圍為:
(-∞,-
1
3
)∪(
2
3
,+∞).③正確.
a2+b2
表示為(a,b)與(0,0)兩點間的距離,
由于原點(0,0)到直線2x-3y+1=0的距離d=
1
4+9

由此可得:
a2+b2
1
4+9
=
13
13
恒成立,∴④正確;
故答案是:③④.
點評:本題主要考查了簡單線性規(guī)劃,用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個結(jié)論:
(1)函數(shù)f(x)=
x-1
x+1
的對稱中心是(-1,-1);
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2
(3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側(cè),則3b-2a>1;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個單位后變?yōu)榕己瘮?shù),則?的最小值是
π
12
其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對稱中心是(-
1
2
,-
1
2
)
;
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2;
(3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側(cè),當a>0且a≠1,b>0時,
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)

其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對稱中心是(-
1
2
,-
1
2
)
;
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2;
(3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側(cè),當a>0且a≠1,b>0時,
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個單位后變?yōu)榕己瘮?shù),則?的最小值是
12

(5)已知m,n是兩條不重合的直線,α,β是兩個不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•福建模擬)給出以下四個結(jié)論:
(1)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2
(2)曲線y=1+
4-x2
(|x|≤2)
與直線y=k(x-2)+4有兩個交點時,實數(shù)k的取值范圍是(
5
12
3
4
]

(3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側(cè),則3b-2a>1;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個單位后變?yōu)榕己瘮?shù),則?的最小值是
π
12
,其中正確的結(jié)論是:
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

同步練習(xí)冊答案