已知數(shù)列{an}的通項公式是,其前n項和是Sn,對任意的m,n∈N*且m<n,則Sn-Sm的最大值是( )
A.-21
B.4
C.8
D.10
【答案】分析:根據(jù)數(shù)列的通項公式,求得數(shù)列的前3項為負值,從第九項開始也全部為負,因此,S7-S4最大.
解答:解:由=0,得n=4或n=8,即a4=a8=0,
又函數(shù)f(n)=-n2+12n-32的圖象開口向下,所以數(shù)列前3項為負,
當n>8時,數(shù)列中的項均為負數(shù),
在m<n的前提下,Sn-Sm的最大值是S7-S4=a5+a6+a7=-52+12×5-32-62+12×6-72+12×7-32=10.
故選D.
點評:本題考查了數(shù)列的函數(shù)特性,解答的關鍵是分清在m<n的前提下,什么情況下Sn最大,什么情況下Sn最小,題目同時考查了數(shù)學轉(zhuǎn)化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項為an=2n-1,Sn為數(shù)列{an}的前n項和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=
1
n+1
+
n
求它的前n項的和.

查看答案和解析>>

同步練習冊答案