已知a、b、c∈R,函數(shù)f(x)=ax2+bx+c,g(x)=ax+b,當(dāng)-1≤x≤1時|f(x)|≤1,

(1)證明|c|≤1;

(2)當(dāng)-1≤x≤1時,求證|g(x)|≤2;

(3)設(shè)a>0,當(dāng)-1≤x≤1時,g(x)的最大值為2,求f(x)

答案:
解析:


提示:

此題是不等式與函數(shù)單調(diào)性、二次函數(shù)綜合運用的一道難度較大的題,題目分層設(shè)問,難度逐步提高,應(yīng)靈活運用絕對值不等式的性質(zhì)進(jìn)行推理、論證.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

50、已知a,b,c∈R,證明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
(1)已知x,y都是正實數(shù),求證:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求證:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R+且滿足a+2b+3c=1,則
1
a
+
1
2b
+
1
3c
的最小值為
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c∈R,且a+b+c=1,求證:a2+b2+c2
1
3
;
(2)a,b,c為互不相等的正數(shù),且abc=1,求證:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案