【題目】已知小李每次打靶命中靶心的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計小李三次打靶恰有兩次命中靶心的概率.先由計算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2,3表示命中靶心,4,5,6,7,8,9表示未命中靶心,再以每三個隨機(jī)數(shù)為一組,代表三次打靶的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

 321 421 191 925 271 932 800 478

 589 663 531 297 396 021 546 388

 230 113 507 965

據(jù)此估計,小李三次打靶恰有兩次命中的概率為(  )

A. 0.25 B. 0.30

C. 0.35 D. 0.40

【答案】B

【解析】利用古典概型的概率計算公式,即可求出小李三次打靶恰有兩次命中靶心的概率.

由題意知,在20組隨機(jī)數(shù)中表示三次打靶恰有兩次命中靶心的有421,191,271,932,800,531,共6組隨機(jī)數(shù),所以所求概率為=0.30,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量用其質(zhì)量指標(biāo)值來衡量)質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為配方和配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗結(jié)果:

配方的頻數(shù)分布表:

指標(biāo)值分組

[90,94

[94,98

[98,102

[102,106

[106,110]

頻數(shù)

8

20

42

22

8

配方的頻數(shù)分布表:

指標(biāo)值分組

[90,94

[94,98

[98,102

[102,106]

[106,110]

頻數(shù)

4

12

42

32

10

1)分別估計用配方、配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;

2)已知用配方生產(chǎn)的一件產(chǎn)品的利潤(單位:元)與其質(zhì)量指標(biāo)值的關(guān)系為,估計用配方生產(chǎn)的一件產(chǎn)品的利潤大于的概率,并求用配方生產(chǎn)的上述件產(chǎn)品的平均利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒子中僅有4個白球和5個黑球,從中任意取出一個球.

1取出的球是黃球是什么事件?它的概率是多少?

2取出的球是白球是什么事件?它的概率是多少?

3取出的球是白球或黑球是什么事件?它的概率是多少?

4)設(shè)計一個用計算器或計算機(jī)模擬上面取球的試驗,并模擬100次,估計取出的球是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

1當(dāng)時,求函數(shù)上的最大值和最小值;

2當(dāng)時,是否存在實數(shù),當(dāng)是自然對數(shù)底數(shù)時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓C過定點(diǎn)F20),且與直線x=-2相切,圓心C的軌跡為E,

1)求圓心C的軌跡E的方程;

2)若直線lEP,Q兩點(diǎn),且線段PQ的中心點(diǎn)坐標(biāo)(1,1),求|PQ|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由0、1、2、3、4五個數(shù)字任取三個數(shù)字,組成能被3整除的沒有重復(fù)數(shù)字的三位數(shù),共有( )個.

A. 14B. 16C. 18D. 20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為一個摩天輪示意圖。該摩天輪圓半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60s轉(zhuǎn)動一周.圖中OA與地面垂直。以O為始邊,逆時針轉(zhuǎn)動0角到OB設(shè)B點(diǎn)與地面的距離為hm.

1)求h的函數(shù)解析式;

(2)設(shè)從OA開始轉(zhuǎn)動,經(jīng)過ts到達(dá)OB,求ht的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,的中點(diǎn).

(1)證明:平面;

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù)在區(qū)間上是減函數(shù),且滿足.令,則的大小關(guān)系為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案