精英家教網 > 高中數學 > 題目詳情

【題目】已知點Q是圓上的動點,點,若線段QN的垂直平分線MQ于點P.

(I)求動點P的軌跡E的方程

(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于B,C兩點,求證:直線AB、AC的斜率之和為定值.

【答案】(Ⅰ) (Ⅱ)見證明

【解析】

)線段的垂直平分線交于點P,所以,則為定值,所以P的軌跡是以為焦點的橢圓,結合題中數據求出橢圓方程即可;()設出直線方程,聯立橢圓方程得到韋達定理,寫出化簡可得定值.

解:()由題可知,線段的垂直平分線交于點P,

所以,則,

所以P的軌跡是以為焦點的橢圓,

設該橢圓方程為,

,所以,

可得動點P的軌跡E的方程為.

)由()可得,過點D的直線斜率存在且不為0,

故可設l的方程為,,

,

由于直線過點,所以,

所以(即為定值)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關系,請用相關系數加以說明;

Ⅱ)建立y關于t的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.

附注:

參考數據:,,

≈2.646.

參考公式:相關系數

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

(1)求的單調遞增區(qū)間;

(2)當的圖像剛好與軸相切時,設函數,其中,求證:存在極小值且該極小值小于.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓C:(ab>0)的左、右頂點分別為A1(﹣2,0),A2(2,0),右準線方程為x=4.過點A1的直線交橢圓C于x軸上方的點P,交橢圓C的右準線于點D.直線A2D與橢圓C的另一交點為G,直線OG與直線A1D交于點H.

(1)求橢圓C的標準方程;

(2)若HG⊥A1D,試求直線A1D的方程;

(3)如果,試求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)x32x23x(xR)的圖象為曲線C.

(1)求過曲線C上任意一點切線斜率的取值范圍;

(2)若在曲線C上存在兩條相互垂直的切線,求其中一條切線與曲線C的切點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點,從直線上一點P向圓引兩條切線,,切點分別為C,D.設線段的中點為M,則線段長的最小值為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的質量指標值,由測量結果得到如圖所示的頻率分布直方圖,質量指標值落在區(qū)間,的頻率之比為

)求這些產品質量指標值落在區(qū)間的頻率;

用分層抽樣的方法在區(qū)間抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意

抽取2件產品,求這2件產品都在區(qū)間內的概率

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左,右焦點分別,過的直線l交橢圓于A,B兩點,若的最大值為5,則b的值為( )

A. 1 B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位共有10名員工,他們某年的收入如下表:

員工編號

1

2

3

4

5

6

7

8

9

10

年薪(萬元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

1)求該單位員工當年年薪的平均值和中位數;

2)已知員工年薪收入與工作年限成正相關關系,某員工工作第一年至第四年的年薪分別為4萬元、5.5萬元、6萬元、8.5萬元,預測該員工第六年的年薪為多少?

附:線性回歸方程中系數計算公式分別為:,,其中為樣本均值.

查看答案和解析>>

同步練習冊答案