已知函數(shù)
(1)用定義證明上單調(diào)遞增;
(2)若上的奇函數(shù),求的值;
(3)若的值域為D,且,求的取值范圍.

(1)設


 即
上單調(diào)遞增 ;
(2);(3).

解析試題分析:(1)在定義域內(nèi)任取,證明,即,所以上單調(diào)遞增;(2)因為,上的奇函數(shù),所以,即,代入表達式即可得;(3)可求得的值域,由可得不等式,所以.
試題解析:(1)設                          1分
      3分

 即                            5分
上單調(diào)遞增                                            6分
(2)上的奇函數(shù)  8分

                                                         11分
(用必須檢驗,不檢驗扣2分)
(3)由
                             14分


的取值范圍是                                        16分
考點:1、函數(shù)單調(diào)性的證明;2、奇函數(shù)的定義;(3)函數(shù)的值域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為奇函數(shù).
(1)求常數(shù)的值;
(2)判斷函數(shù)的單調(diào)性,并說明理由;
(3)函數(shù)的圖象由函數(shù)的圖象先向右平移2個單位,再向上平移2個單位得到,寫出的一個對稱中心,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù),.
(1) 如果實數(shù)滿足,函數(shù)是否具有奇偶性? 如果有,求出相應的值;如果沒有,說明原因;
(2) 如果,討論函數(shù)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,判斷的奇偶性,并說明理由;
(2)當時,若,求的值;
(3)若,且對任何不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為,
(1)求;
(2)若,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)求的值,作出函數(shù)的圖象并指出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設集合.
⑴求的值;
⑵判斷函數(shù)的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,當時,對應值的集合為.
(1)求的值;(2)若,求該函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,
(1)若的圖像關于對稱,且,求的解析式;
(2)對于(1)中的,討論的圖像的交點個數(shù).

查看答案和解析>>

同步練習冊答案