已知的左、右焦點,是橢圓上位于第一象限內(nèi)的一點,點也在橢圓 上,且滿足為坐標原點),,若橢圓的離心率等于, 則直線的方程是  ( ▲ ) .
A.B.C.D.
A
本題考查橢圓的性質(zhì).
,則,則軸,所以,
關于原點對稱,則。所以直線的方程是
又橢圓的離心率等于,則,即,則,則
所以直線的方程是
正確答案為A
 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓有兩頂點A(﹣1,0)、B(1,0),過其焦點F(0,1)的直線l與橢圓交于C、D兩點,并與x軸交于點P.直線AC與直線BD交于點Q.

(Ⅰ)當|CD|=時,求直線l的方程;
(Ⅱ)當點P異于A、B兩點時,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓方程為,斜率為的直線過橢圓的上焦點且與橢圓相交于兩點,線段的垂直平分線與軸相交于點
(Ⅰ)求的取值范圍;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如題(9)圖,過雙曲線上左支一點作兩條相互垂直的直線分別過兩焦點,其中一條與雙曲線交于點,若是等腰三角形,則雙曲線的離心率為( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)





圓中,求面積最小的圓的半徑長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓短軸的一個端點與兩個焦點組成一個正三角形,焦點到橢圓長軸端點的最短距離為,求此橢圓的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中心在原點,對稱軸為坐標軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是____;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩定點A(-2,0)、B(1,0),如果動點P滿足|PA|=2|PB|,則點P的軌跡方程為:________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓經(jīng)過點,則______,離心率______.

查看答案和解析>>

同步練習冊答案