【題目】在平面直角坐標系中,為坐標原點,已知兩點、在軸的正半軸上,點在軸的正半軸上.若,.
()求向量,夾角的正切值.
()問點在什么位置時,向量,夾角最大?
【答案】(1)見解析;(2)見解析.
【解析】分析:()設(shè)向量與軸的正半軸所成的角分別為, 則向量所成的夾角為,由兩角差的正切公式可得向量夾角的正切值為;()由 (1)知 ,利用基本不等式即可的結(jié)果.
詳解:(1)由題意知,A的坐標為A(0,6),B的坐標為B(0,4),C(x,0),x>0
設(shè)向量,與x軸的正半軸所成的角分別為α,β,
則向量,所成的夾角為|β﹣α|=|α﹣β|,
由三角函數(shù)的定義知:tanα=,tanβ=,由公式tan(α﹣β)=,
得向量,的夾角的正切值等于tan(α﹣β)==,
故所求向量,夾角的正切值為tan(α﹣β)=;
(2)由 (1)知tan(α﹣β)==≤=,
所以tan(α﹣β)的最大值為時,夾角|α﹣β|的值也最大,
當x=時,取得最大值成立,解得x=2,
故點C在x的正半軸,距離原點為2,
即點C的坐標為C(2,0)時,向量,夾角最大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是平面,,是直線,給出下列命題:
①若,,則;
②若,,,,則;
③如果,,,是異面直線,則與相交;
④若.,且,,則,且
其中正確確命題的序號是_____(把正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面, 為棱中點. , , .
(I)求證: 平面.
(II)求證: 平面.
(III)在棱的上是否存在點,使得平面平面?如果存在,求此時的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,其中為常數(shù).
(1)證明: ;
(2)是否存在,使得為等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形和四邊形所在的平面互相垂直. , , .
()求證: 平面.
()求證: 平面.
()在直線上是否存在點,使得平面?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用這六個數(shù)字.
(1)能組成多少個無重復(fù)數(shù)字的四位偶數(shù)?
(2)能組成多少個無重復(fù)數(shù)字且為的倍數(shù)的五位數(shù)?
(3)能組成多少個無重復(fù)數(shù)字且比大的四位數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機取出兩個球,求取出的球的編號之和不大于4的概率.
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com