【題目】在平面直角坐標系中,為坐標原點,已知兩點、軸的正半軸上,點軸的正半軸上.若,

)求向量夾角的正切值.

)問點在什么位置時,向量,夾角最大?

【答案】(1)見解析;(2)見解析.

【解析】分析:()設(shè)向量軸的正半軸所成的角分別為, 則向量所成的夾角為,由兩角差的正切公式可得向量夾角的正切值為;()由 (1)知 ,利用基本不等式即可的結(jié)果.

詳解:(1)由題意知,A的坐標為A(0,6),B的坐標為B(0,4),C(x,0),x>0

設(shè)向量,與x軸的正半軸所成的角分別為α,β,

則向量所成的夾角為|β﹣α|=|α﹣β|,

由三角函數(shù)的定義知:tanα=,tanβ=,由公式tan(α﹣β)=,

得向量,的夾角的正切值等于tan(α﹣β)==,

故所求向量,夾角的正切值為tan(α﹣β)=;

(2)由 (1)知tan(α﹣β)===,

所以tan(α﹣β)的最大值為時,夾角|α﹣β|的值也最大,

當x=時,取得最大值成立,解得x=2,

故點C在x的正半軸,距離原點為2,

即點C的坐標為C(2,0)時,向量,夾角最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是平面,是直線,給出下列命題:

,,則;

,,,則;

如果,是異面直線,則相交;

,且,,則,且

其中正確確命題的序號是_____(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面, 為棱中點. , ,

I)求證: 平面

II)求證: 平面

III)在棱的上是否存在點,使得平面平面?如果存在,求此時的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求過點,斜率是直線的斜率的的直線方程;

(2)求經(jīng)過點,且在軸上的截距等于在軸上截距的2倍的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線有相同的焦點為原點,點是準線上一動點,點在拋物線上,且,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明:

2)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形和四邊形所在的平面互相垂直. ,

)求證: 平面

)求證: 平面

)在直線上是否存在點,使得平面?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】這六個數(shù)字.

(1)能組成多少個無重復(fù)數(shù)字的四位偶數(shù)?

(2)能組成多少個無重復(fù)數(shù)字且為的倍數(shù)的五位數(shù)?

(3)能組成多少個無重復(fù)數(shù)字且比大的四位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.

(1)從袋中隨機取出兩個球,求取出的球的編號之和不大于4的概率.

(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

同步練習(xí)冊答案