如圖,在長(zhǎng)方體ABCDA1B1C1D1中,AA1AD=1,ECD的中點(diǎn).

(1)求證:B1EAD1.
(2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(3)若二面角AB1EA1的大小為30°,求AB的長(zhǎng).
(1)見(jiàn)解析(2)(3)2
(1)以A為原點(diǎn),,,的方向分別為x軸、y軸、z軸的正方向建立空間直角坐標(biāo)系(如圖).設(shè)ABa,則A(0,0,0),D(0,1,0),D1(0,1,1),
E,B1(a,0,1),

=(0,1,1),=(a,0,1),.
·=-×0+1×1+(-1)×1=0,
B1EAD1.
(2)假設(shè)在棱AA1上存在一點(diǎn)P(0,0,z0)(0≤z0≤1),
使得DP∥平面B1AE.此時(shí)=(0,-1,z0).
又設(shè)平面B1AE的法向量n=(x,y,z).
nn,得.
x=1,得平面B1AE的一個(gè)法向量n
要使DP∥平面B1AE,只要n,有az0=0,
解得z0.
DP?平面B1AE,
∴存在點(diǎn)P,滿(mǎn)足DP∥平面B1AE,此時(shí)AP.
(3)連接A1D,B1C,由長(zhǎng)方體ABCDA1B1C1D1AA1AD=1,得AD1A1D.
B1CA1D,
AD1B1C.
又由(1)知B1EAD1,且B1CB1EB1,
AD1⊥平面DCB1A1
是平面A1B1E的一個(gè)法向量,此時(shí)=(0,1,1).
設(shè)n所成的角為θ,則
cos θ.
∵二面角AB1EA1的大小為30°,
∴|cos θ|=cos 30°,即,
解得a=2,即AB的長(zhǎng)為.2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正方形ABCD的邊長(zhǎng)為2,AC∩BD=O.將正方形ABCD沿對(duì)角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.

(1)當(dāng)a=2時(shí),求證:AO⊥平面BCD.
(2)當(dāng)二面角A-BD-C的大小為120°時(shí),求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖幾何體中,四邊形為矩形,,,,.

(1)若的中點(diǎn),證明:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,四棱錐P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn)。

(1)求證:BM∥平面PAD;
(2)在側(cè)面PAD內(nèi)找一點(diǎn)N,使MN平面PBD;
(3)求直線PC與平面PBD所成角的正弦。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD­A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是棱ABBC上的點(diǎn),且EBFB=1.
 
(1)求異面直線EC1FD1所成角的余弦值;
(2)試在面A1B1C1D1上確定一點(diǎn)G,使DG⊥平面D1EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)正方形ABCD的頂點(diǎn)A,引PA⊥平面ABCD.若PABA,則平面ABP和平面CDP所成的二面角的大小是(  ).
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在空間直角坐標(biāo)系中,點(diǎn)與點(diǎn)的距離為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正三棱柱中,已知,,則異面直線所成角的正弦值為(  )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)、是平面直角坐標(biāo)系(坐標(biāo)原點(diǎn)為)內(nèi)分別與軸、軸正方向相同的兩個(gè)單位向量,且,,則的面積等于            

查看答案和解析>>

同步練習(xí)冊(cè)答案