精英家教網 > 高中數學 > 題目詳情

【題目】某中學隨機選取了名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖,觀察圖中數據,完成下列問題.

)求的值及樣本中男生身高在(單位:)的人數.

)假設用一組中的每個數據可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高.

)在樣本中,從身高在(單位:)內的男生中任選兩人,求這兩人的身高都不低于的概率.

【答案】(1)4;(2)0.4

【解析】試題分析:)由題意,根據頻率分布直方圖各個矩形的面積之和為,即可求解的值,進而得到身高在的頻率和人數為;

根據平均數的計算公式,即可求解全校男生的平均身高;

根據頻率分布直方圖,可得身高在內的男生的人數,再利用古典概型的概率計算公式,即可求解相應的概率.

試題解析:

)由題意:,

身高在的頻率為,人數為

)設樣本中男生身高的平均值為,則:

,

所以,估計該校全體男生的平均身高為

)在樣本中,身高在(單位:)內的男生分別由人,人,從身高在(單位:)內的男生中任選兩人,有種,這兩人的身高都不低于,有種,所以所求概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】定義“正對數”:ln+x= ,現有四個命題: ①若a>0,b>0,則ln+(ab)=bln+a
②若a>0,b>0,則ln+(ab)=ln+a+ln+b
③若a>0,b>0,則 b
④若a>0,b>0,則ln+(a+b)≤ln+a+ln+b+ln2
其中的真命題有: . (寫出所有真命題的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調查結果如表:

古文迷

非古文迷

合計

男生

26

24

50

女生

30

20

50

合計

56

44

100

(Ⅰ)根據表中數據能否判斷有60%的把握認為“古文迷”與性別有關?
(Ⅱ)現從調查的女生中按分層抽樣的方法抽出5人進行調查,求所抽取的5人中“古文迷”和“非古文迷”的人數;
(Ⅲ)現從(Ⅱ)中所抽取的5人中再隨機抽取3人進行調查,記這3人中“古文迷”的人數為ξ,求隨機變量ξ的分布列與數學期望.
參考公式:K2= ,其中n=a+b+c+d.
參考數據:

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知(2x2+x﹣y)n的展開式中各項系數的和為32,則展開式中x5y2的系數為 . (用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有10人.在20名女性駕駛員中,平均車速超過100km/h的有5人,不超過100km/h的有15人.
(Ⅰ)完成下面的列聯表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關;

平均車速超過100km/h人數

平均車速不超過100km/h人數

合計

男性駕駛員人數

女性駕駛員人數

合計

(Ⅱ)以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過100km/h的車輛數為ζ,若每次抽取的結果是相互獨立的,求ζ的分布列和數學期望.
參考公式: ,其中n=a+b+c+d.
參考數據:

P(K2≥k0

0.150

0.100

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某聯歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得2分;方案乙的中獎率為 ,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數學期望較大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過曲線C1 =1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,延長F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為(
A.
B. ﹣1
C. +1
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】觀察下表:

1,

2,3,

4,5,6,7,

8,9,10,11,12,13,14,15,

……

問:(1)此表第n行的第一個數與最后一個數分別是多少?

(2)此表第n行的各個數之和是多少?

(3)2012是第幾行的第幾個數?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若集合A={1,2,3},B={(x,y)|x+y﹣4>0,x,y∈A},則集合B中的元素個數為(
A.9
B.6
C.4
D.3

查看答案和解析>>

同步練習冊答案