【題目】已知函數(shù)

1)當(dāng)函數(shù)與函數(shù)圖象的公切線l經(jīng)過坐標(biāo)原點(diǎn)時,求實數(shù)a的取值集合;

2)證明:當(dāng)時,函數(shù)有兩個零點(diǎn),且滿足

【答案】1;(2)證明見解析.

【解析】

1)先利用導(dǎo)數(shù)的幾何意義和函數(shù)求出公切線方程,再將公切線方程與函數(shù)聯(lián)立,表示,再構(gòu)造函數(shù)利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和值域,可求出a的取值;

2)要證有兩個零點(diǎn),只要證有兩個零點(diǎn)即可,而時函數(shù)的一個零點(diǎn),所以只需再利用導(dǎo)數(shù)研究此函數(shù)的性質(zhì)即可,由于兩個零點(diǎn),一個是,另一個在區(qū)間上,若設(shè), 所以只需利用導(dǎo)數(shù)證明即可 .

解:(1)設(shè)公切線l與函數(shù)的切點(diǎn)為,則公切線l的斜率,公切線l的方程為:,將原點(diǎn)坐標(biāo)代入,得,解得,公切線l的方程為:

將它與聯(lián)立,整理得

,對之求導(dǎo)得:,令,解得

當(dāng)時,單調(diào)遞減,值域為

當(dāng)時,單調(diào)遞增,值域為,

由于直線l與函數(shù)相切,即只有一個公共點(diǎn),

故實數(shù)a的取值集合為

2)證明:,要證有兩個零點(diǎn),只要證有兩個零點(diǎn)即可.,即時函數(shù)的一個零點(diǎn).

求導(dǎo)得:,令,解得.當(dāng)時,單調(diào)遞增;

當(dāng)時,單調(diào)遞減.當(dāng)時,取最小值,,必定存在使得二次函數(shù),

.因此在區(qū)間上必定存在的一個零點(diǎn).

練上所述,有兩個零點(diǎn),一個是,另一個在區(qū)間上.

下面證明

由上面步驟知有兩個零點(diǎn),一個是,另一個在區(qū)間上.

不妨設(shè),下面證明即可.

,對之求導(dǎo)得,

在定義域內(nèi)單調(diào)遞減,,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成(平面).若分別為線段的中點(diǎn),則在翻轉(zhuǎn)過程中,下列說法正確的是( )

A.與平面垂直的直線必與直線垂直

B.異面直線所成的角是定值

C.一定存在某個位置,使

D.三棱錐外接球半徑與棱的長之比為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體,其底面為矩形,四邊形為平行四邊形,平面平面,,,的中點(diǎn).

1)證明:平面

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域均為D的三個函數(shù),滿足條件:對任意,點(diǎn)與點(diǎn)都關(guān)于點(diǎn)對稱,則稱關(guān)于對稱函數(shù)”.已知函數(shù),,關(guān)于對稱函數(shù),記的定義域為D,若對任意,都存在,使得成立,則實數(shù)a的取值范圍是(

A..B..C..D..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形和菱形所在平面互相垂直,如圖,其中 , ,點(diǎn)為線段的中點(diǎn).

(Ⅰ)試問在線段上是否存在點(diǎn),使得直線平面?若存在,請證明平面,并求出的值,若不存在,請說明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二進(jìn)制來源于我國古代的《易經(jīng)》,該書中有兩類最基本的符號:“─”﹣﹣,其中“─”在二進(jìn)制中記作“1”,﹣﹣在二進(jìn)制中記作“0”.如符號對應(yīng)的二進(jìn)制數(shù)0112化為十進(jìn)制的計算如下:01120×22+1×21+1×20310.若從兩類符號中任取2個符號進(jìn)行排列,則得到的二進(jìn)制數(shù)所對應(yīng)的十進(jìn)制數(shù)大于2的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】受新冠肺炎疫情影響,某學(xué)校按上級文件指示,要求錯峰放學(xué),錯峰有序吃飯.高三年級一層樓六個班排隊,甲班必須排在前三位,且丙班、丁班必須排在一起,則這六個班排隊吃飯的不同安排方案共有(

A.240B.120C.188D.156

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)不需證明,直接寫出的奇偶性:

(Ⅱ)討論的單調(diào)性,并證明有且僅有兩個零點(diǎn):

(Ⅲ)設(shè)的一個零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.

查看答案和解析>>

同步練習(xí)冊答案