在平面直角坐標(biāo)系中,為坐標(biāo)原點,已知兩點,若動點滿足且點的軌跡與拋物線交于、兩點.

   (Ⅰ)求證:

(Ⅱ)在軸上是否存在一點,使得過點的直線交拋物線于于兩點,并以線段為直徑的圓都過原點。若存在,請求出的值及圓心的軌跡方程;若不存在,請說明理由.

(Ⅰ) 見解析   (Ⅱ)  


解析:

(I)解:由

知點的軌跡是過,兩點的直線,故點的軌跡方程是:

……………………………3分

…………………………………………6分

(II)假設(shè)存在,使得過點的直線交拋物線,于、兩點,

并以線段為直徑的圓都過原點。設(shè)

      由題意,直線的斜率不為零,

      所以,可設(shè)直線的方程為

      代入 ………………………7分

同時,

……………9分

解得滿足

      此時,以為直徑的圓都過原點。 ……………………11分

      設(shè)弦的中點為

      則消去,即為所求圓心的軌跡方程。…………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習(xí)冊答案