在送醫(yī)下鄉(xiāng)活動(dòng)中,某醫(yī)院安排甲、乙、丙、丁、戊五名醫(yī)生到3所鄉(xiāng)醫(yī)院工作,每所醫(yī)院至少安排一名醫(yī)生,且甲、乙兩名醫(yī)生不安排在同一醫(yī)院,丙、丁兩名醫(yī)生也不安排在同一醫(yī)院,則不同的分配方法總數(shù)為( 。
A、36B、72C、84D、108
考點(diǎn):排列、組合及簡單計(jì)數(shù)問題
專題:排列組合
分析:五名醫(yī)生到3所鄉(xiāng)醫(yī)院工作,每所醫(yī)院至少安排一名醫(yī)生,名醫(yī)生可以分為(2,2,1)和(3,1,1)兩種分法,根據(jù)分類計(jì)數(shù)原理可得
解答: 解:①當(dāng)有二所醫(yī)院分2人另一所醫(yī)院分1人時(shí),總數(shù)有:
C
2
5
C
2
3
A
2
2
A
3
3
=90種,其中有、甲乙二人或丙丁二人在同一組有
A
3
3
+4
A
3
3
=30種;故不同的分配方法是90-30=60種
②有二所醫(yī)院分1人另一所醫(yī)院分3人.有
C
1
2
C
1
2
A
3
3
=24種.
根據(jù)分類計(jì)數(shù)原理得,故不同的分配方法總數(shù)60+24=84.
故選:C
點(diǎn)評(píng):本題考查了分組分配計(jì)數(shù)原理,關(guān)鍵是如何分組,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1,AB=AC=1,AA1=2.AB⊥AC.
D、E分別為AA1、B1C的中點(diǎn).
(1)求DE的長;
(2)證明:DE⊥平面BCC1;
(3)求二面角D-BC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,前n項(xiàng)和Sn=na+n(n-1)b,(b≠0).
(Ⅰ)求證{an}是等差數(shù)列;
(Ⅱ)求證:點(diǎn)Pn(an,
Sn
n
-1)都落在同一條直線上;
(Ⅲ)若a=1,b=
1
2
,且P1、P2、P3三點(diǎn)都在以(r,r)為圓心,r為半徑的圓外,求r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x(ax-1)>a(x-1),其中a∈R.
(1)當(dāng)a=
1
2
時(shí),解不等式;
(2)若不等式在x∈R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表1:男生                    表2:女生
等級(jí)優(yōu)秀合格尚待改進(jìn)等級(jí)優(yōu)秀合格尚待改進(jìn)
頻數(shù)15x5頻數(shù)153y
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測評(píng)等級(jí)為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
男生女生總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
參考數(shù)據(jù)與公式:
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
臨界值表:
P(K2>k00.050.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+2x-6y-15=0與直線(1+3m)x+(3-2m)y+4m-17=0的交點(diǎn)個(gè)數(shù)是(  )
A、2B、1C、0D、與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線 y2=4x
(1)傾斜角為
π
4
的直線l經(jīng)過拋物線的焦點(diǎn),且與拋物線相交于A、B兩點(diǎn),求線段AB的長.
(2)在拋物線上求一點(diǎn)P,使得點(diǎn)P到直線 l:x-y+4=0的距離最短,并求最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
25
+
y2
9
=1上一點(diǎn)到左準(zhǔn)線的距離為5,則該點(diǎn)到右焦點(diǎn)的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若輸入a=89,k=2,則運(yùn)行下列程序后輸出的結(jié)果為( 。
A、1001101
B、1101100
C、1001001
D、1011001

查看答案和解析>>

同步練習(xí)冊(cè)答案