【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充分必要條件 D. 既不充分也不必要條件
【答案】A
【解析】雙曲線的方程為,則漸近線方程為,漸近線方程為: ,反之當漸近線方程為時,只需要滿足,等軸雙曲線即可.故選擇充分不必要條件.
故答案為:A.
【題型】單選題
【結(jié)束】
10
【題目】如圖,為測量河對岸塔 的高,先在河岸上選一點 ,使 在塔底 的正東方向上,在點 處測得 點的仰角為 ,再由點 沿北偏東 方向走 到位置 ,測得 ,則塔 的高是( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為,甲投籃3次均未命中的概率為,乙每次投籃命中的概率均為,乙投籃2次恰好命中1次的概率為,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若乙投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線a、b和平面,下列說法中正確的有______ .
若,則;
若,則;
若,則;
若直線,直線,則;
若直線a在平面外,則;
直線a平行于平面內(nèi)的無數(shù)條直線,則;
若直線,那么直線a就平行于平面內(nèi)的無數(shù)條直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C的極坐標方程為ρ=6cosθ+2sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設(shè)點Q(1,2),直線l與曲線C交于A,B兩點,求|QA||QB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓.如圖所示,斜率為且不過原點的直線交橢圓于兩點,線段的中點為,射線交橢圓于點,交直線于點.
(Ⅰ)求的最小值;
(Ⅱ)若,
求證:直線過定點;
(ii)試問點能否關(guān)于軸對稱?若能,求出此時的外接圓方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且僅有兩個整數(shù)解,則實數(shù)a的取值范圍為( )
A.(﹣ , ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)業(yè)余足球運動員共有15000人,其中男運動員9000人,女運動員6000人,為調(diào)查該地區(qū)業(yè)余足球運動員每周平均踢足球占用時間的情況,采用分層抽樣的方法,收集300位業(yè)務(wù)足球運動員每周平均踢足球占用時間的樣本數(shù)據(jù)(單位:小時)
得到業(yè)余足球運動員每周平均踢足球所占用時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務(wù)運動員的每周平均踢足球時間所占用時間超過4小時”
定義為“熱愛足球”.
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(1)應(yīng)收集多少位女運動員樣本數(shù)據(jù)?
(2)估計該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有80位女運動員“熱愛足球”.請畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認為“熱愛足球與性別有關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表示兩個不同的平面, 表示兩條不同直線,對于下列兩個命題:
①若,則“”是“”的充分不必要條件;
②若,則“”是“且”的充要條件.判讀正確的是( )
A. ①②都是真命題 B. ①是真命題,②是假命題
C. ①是假命題,②是真命題 D. ①②都是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標系中,已知曲線C1:ρ=2cosθ,將曲線C1上的點向左平移一個單位,然后縱坐標不變,橫坐標伸長到原來的2倍,得到曲線C,又已知直線l: (t是參數(shù)),且直線l與曲線C交于A,B兩點.
(1)求曲線C的直角坐標方程,并說明它是什么曲線;
(2)設(shè)定點P( ,0),求|PA|+|PB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com