11.已知冪函數(shù)f(x)=k•xa的圖象過點(diǎn)($\frac{1}{2}$,$\frac{1}{4}$)則k+a=3.

分析 由冪函數(shù)的定義和解析式求出k的值,把已知點(diǎn)代入求出a的值,可得答案.

解答 解:∵f(x)=k•xa是冪函數(shù),∴k=1,
冪函數(shù)f(x)=xa的圖象過點(diǎn)($\frac{1}{2}$,$\frac{1}{4}$),
∴($\frac{1}{2}$)a=$\frac{1}{4}$,則a=2,
則k+a=3,
故答案為:3.

點(diǎn)評(píng) 本題考查了冪函數(shù)的定義與解析式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知冪函數(shù)f(x)=(m2-m-1)xm在(0,+∞)上是增函數(shù),則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.有一容量為50的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[10,15),4;[15,20),5;[20,25),10;[25,30),11;
[30,35),9;[35,40),8;[40,45],3.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖和頻率分布折線圖;
(3)估計(jì)總體在[20,35)之內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{1-lo{g}_{2}x,x>1}\end{array}\right.$,則滿足f(x)≤4的x的取值范圍是( 。
A.[-1,2]B.[0,2]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四組函數(shù),兩個(gè)函數(shù)相同的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=log33x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=($\sqrt{x}$)2,g(x)=|x|D.f(x)=x,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.關(guān)于函數(shù)y=log4(x2-2x+5)有以下4個(gè)結(jié)論:其中正確的有①②③.
①定義域?yàn)镽;                   ②遞增區(qū)間為[1,+∞);
③最小值為1;                    ④圖象恒在x軸的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若關(guān)于x的不等式mx+2>0的解集是{x|x<2},則實(shí)數(shù)m等于( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}\\{x^2}-2x+2\end{array}\right.\begin{array}{l}(x≤1)\\(x>1)\end{array}$,若關(guān)于x的方程f(x)-m=0有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)m的取值范圍為(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知,某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積為12(cm3);表面積為30+6$\sqrt{2}$(cm2).

查看答案和解析>>

同步練習(xí)冊(cè)答案