15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,3),$\overrightarrow{c}$=(4,1),若用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{c}$,則$\overrightarrow{c}$=( 。
A.$\overrightarrow{a}$-2$\overrightarrow$B.2$\overrightarrow{a}$-$\overrightarrow$C.2$\overrightarrow{a}$+$\overrightarrow$D.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$

分析 利用向量的坐標(biāo)運(yùn)算性質(zhì)、向量相等即可得出.

解答 解:設(shè)$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow$,
則(4,1)=m(1,2)+n(-2,3),
∴$\left\{\begin{array}{l}{4=m-2n}\\{1=2m+3n}\end{array}\right.$,解得m=2,n=-1.
∴$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow$,
故選:B.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算性質(zhì)、向量相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+1,(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)y=f(x)+g(x)在(-∞,0]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)f(x)=-$\frac{1}{2}$x2+blnx在x=1處取得極值.
(1)求b的值.
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是( 。
A.已知命題p:?x0>0,2x0=3,則¬p是?x≤0,2x≠3
B.“p∧q為假命題”是“p∨q為假命題”的充分不必要條件
C.命題“?x∈(0,1),lnx+x2=0”是真命題
D.命題“?x∈R,sinx<x”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=$\frac{lnx}{x}$的最大值為( 。
A.$\frac{1}{e}$B.eC.e2D.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-x3+3x2+9x+a
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.閱讀右邊的程序,若輸出的y=3,則輸入的x的值為(  )
A.1B.2C.±2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的極值點(diǎn);
(2)設(shè)函數(shù)g(x)=f(x)-2(x-1),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.三個(gè)數(shù)1,a,2成等比數(shù)列,則實(shí)數(shù)a=±$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案