【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為4的正方形,PA⊥平面ABCD,E為PB中點(diǎn),PB=4

(I)求證:PD∥面ACE;

(Ⅱ)求三棱錐E﹣ABC的體積。

【答案】(1)見(jiàn)解析; (2).

【解析】

(I)連接BD,交ACF,連接EF,證明EF∥PD,利用線面平行的判定定理,可得結(jié)論;(II)取AB中點(diǎn)為G,連接EG,證明EG⊥平面ABCD,即可求三棱錐E﹣ABC的體積.

(I)證明:連接BD,交ACF,連接EF.

四邊形ABCD為正方形

∴FBD的中點(diǎn)

∵EPB的中點(diǎn),

∴EF∥PD

∵PD ACE,EFACE,

∴PD∥平面ACE …(5分)

Ⅱ)解:取AB中點(diǎn)為G,連接EG

∵EAB的中點(diǎn)

∴EG∥PA

∵PA⊥平面ABCD,

∴EG⊥平面ABCD,

Rt△PAB中,PB=4,AB=4,則PA=4,EG=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).

(1),求點(diǎn)D的坐標(biāo);

(2)問(wèn)是否存在實(shí)數(shù)α,β,使得成立?若存在,求出α,β的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體ABCD-A1B1C1D1,則直線BC1與平面A1BD所成的角的余弦值是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn)),且兩個(gè)焦點(diǎn)的坐標(biāo)依次為(1,0)和(1,0).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為,求當(dāng)為何值時(shí),直線與以原點(diǎn)為圓心的定圓相切,并寫(xiě)出此定圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c,d為實(shí)數(shù),且a2+b2=4,c2+d2=16,證明ac+bd≤8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通項(xiàng)公式;
(Ⅱ)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的左、右焦點(diǎn)分別為,右準(zhǔn)線軸的交點(diǎn)為,.

(1)已知點(diǎn)在橢圓上,求實(shí)數(shù)的值;

(2)已知定點(diǎn)

① 若橢圓上存在點(diǎn),使得,求橢圓的離心率的取值范圍;

② 如圖,當(dāng)時(shí),記為橢圓上的動(dòng)點(diǎn),直線分別與橢圓交于另一點(diǎn),若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F為拋物線C:y2=4x的焦點(diǎn),過(guò)F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為(  )
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是  

A. 至少有一個(gè)白球;都是白球 B. 至少有一個(gè)白球;至少有一個(gè)紅球

C. 至少有一個(gè)白球;紅、黑球各一個(gè) D. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球

查看答案和解析>>

同步練習(xí)冊(cè)答案