已知f(x)=x3mx2x+2(mR)

如果函數(shù)的單調(diào)減區(qū)間恰為(-,1),求函數(shù)f(x)的解析式;

(2)若f(x)的導(dǎo)函數(shù)為f '(x),對(duì)任意x∈(0,+∞),不等式f '(x)≥2xlnx-1恒成立,求實(shí)數(shù)m的取值范圍.

(1)f(x)=x3x2x+2

       (2)m的取值范圍是[ln2-ln3e,+∞).


解析:

(1)f '(x)=3x2+2mx-1,

由題意,f '(x)=3x2+2mx-1<0的解集是(-,1),

即3x2+2mx-1=0的兩根分別為-,1,將x=1或-代入方程3x2+2mx-1=0得m=-1,

f(x)=x3x2x+2,

(2)由題意知3x2+2mx-1≥2xlnx-1在x∈(0,+∞)恒成立,

mlnxxx∈(0,+∞)恒成立,

設(shè)h(x)=lnxx,則h'(x)=,

h'(x)=0得x

當(dāng)0<x時(shí),h'(x)>0;當(dāng)x時(shí),h'(x)<0,

∴當(dāng)x時(shí),h(x)取得最大值為ln-1=ln2-ln3e,

表明mln2-ln3e

因此m的取值范圍是[ln2-ln3e,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3ax在[1,+∞)上是單調(diào)增函數(shù),則a的最大值是(  )

A.0                B.1

C.2                D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知f(x)=x3x,若a,b,c∈R,且ab>0,ac>0,bc>0,則f(a)+f(b)+f(c)的值(   )

A.一定大于0        B.一定等于0        C.一定小于0        D.正負(fù)都有可能

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)必修1單調(diào)性與最大(。┲稻毩(xí)卷(二)(解析版) 題型:解答題

已知f(x)=x3+x(x∈R),

(1)判斷f(x)在(-∞,+∞)上的單調(diào)性,并證明;

(2)求證:滿足f(x)=a(a為常數(shù))的實(shí)數(shù)x至多只有一個(gè).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省高二下學(xué)期3月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為(   )

  A、-1<a<2    B、-3<a<6    C、a<-1或a>2    D、a<-3或a>6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省杭州市高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:選擇題

已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,則f(a)+f(b)+f(c)的值(  )

A.一定大于0  B.一定等于0   C.一定小于0  D.正負(fù)都有可能

 

查看答案和解析>>

同步練習(xí)冊(cè)答案