3.△ABC中,角A,B,C所對的邊分別為a,b,c,已知sinA+sinC=psinB且$ac=\frac{1}{4}{b^2}$.若角B為銳角,則p的取值范圍是( 。
A.$(-\sqrt{2},\sqrt{2})$B.$(0,\sqrt{2})$C.$(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$D.$(\frac{{\sqrt{6}}}{2},\sqrt{2})$

分析 已知第一個等式利用正弦定理化簡,再利用基本不等式變形,將第二個等式代入求出p的范圍,再由B為銳角,得出cosB的范圍,利用余弦定理表示出cosB,整理變形后求出p的范圍,綜上,得出滿足題意p的范圍即可.

解答 解:已知等式sinA+sinC=psinB(p>0),利用正弦定理化簡得:a+c=pb>2$\sqrt{ac}$,
把a(bǔ)c=$\frac{1}{4}$b2代入得:a+c=pb>b,即p>1,
∵B為銳角,
∴0<cosB<1,即0<$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}}{2ac}$-2<1,
∵$\frac{{a}^{2}+{c}^{2}}{2ac}$-2=$\frac{(a+c)^{2}}{2ac}$-3=2p2-3,
∴0<2p2-3<1,
解得:$\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$,
綜上,p的取值范圍為$\frac{\sqrt{6}}{2}$<p<$\sqrt{2}$,
故選:D.

點(diǎn)評 此題考查了正弦、余弦定理,基本不等式的運(yùn)用,熟練掌握定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x>0\\ x+y≤7\\ x+2≤2y\end{array}\right.$,則$\frac{y}{x}$的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,a=2,c=1,∠B=60°,那么b等于( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.1D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=sin(ωx+\frac{π}{4})$,其中ω>0,x∈R.
(1)f(0)=$\frac{\sqrt{2}}{2}$;
(2)如果函數(shù)f(x)的最小正周期為π,當(dāng)$x∈[0,\frac{π}{2}]$時,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)P是正方體棱上的一點(diǎn)(不包括棱的端點(diǎn)),對確定的常數(shù)m,若滿足|PB|+|PD1|=m的點(diǎn)P的個數(shù)為n,則n的最大值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)實數(shù)a,b滿足約束條件$\left\{\begin{array}{l}a+b-2≥0\\ b-a-1≤0\\ a≤1\end{array}\right.$,則$\frac{b+2}{a+2}$的取值范圍為$[1,\frac{7}{5}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若實數(shù)x,y滿足$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\end{array}\right.$,則2x+y的最大值是14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x-t|(t∈R)
(1)t=2時,求不等式f(x)>2的解集;
(2)若對于任意的t∈[1,2],x∈[-1,3],f(x)≥a+x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個幾何體的三視圖如圖所示,那么這個幾何體的表面積是$16+2\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案