精英家教網 > 高中數學 > 題目詳情
18、設f(x)是定義在(0,+∞)上的單調增函數,滿足f(xy)=f(x)+f(y),f(3)=1,求:
(1)f(1);
(2)若f(x)+f(x-8)≤2,求x的取值范圍.
分析:(1)中令x=y=1即可解出.
(2)由f(3)=1可求出f(9)=2,故f(x)+f(x-8)≤2?f(x(x-8))≤f(9),由f(x)的單調性去掉f符號,解出即可.
解答:解:(1)令x=y=1有f(1)=f(1)+f(1),故f(1)=0
(2)由f(3)=1可求出f(9)=2,故f(x)+f(x-8)≤2?f(x(x-8))≤f(9)
因為f(x)是定義在(0,+∞)上的單調增函數
所以x(x-8)≤9且x>0,(x-8)>0
解的8<x≤9
即x的取值范圍為(8,9].
點評:本題考查抽象函數的求值問題:賦值法的應用和函數單調性的應用:解不等式,屬基本題型基本方法的考查.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)是定義在R上的奇函數,且y=f(x)的圖象關于直線x=
12
對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在[-1,1]上的奇函數,g(x)的圖象與f(x)的圖象關于直線x=1對稱,而當x∈[2,3]時,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)對任意x1,x2∈[0,1],且x1≠x2,求證:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的周期為3的周期函數,如圖表示該函數在區(qū)間(-2,1]上的圖象,則f(2013)+f(2014)=( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•內江一模)設f(x)是定義在R上的偶函數,對任意x∈R,都有f(x-2)=f(x+2)且當x∈[-2,0]時,f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數根,則a的取值范圍是
34
,2)
34
,2)

查看答案和解析>>

同步練習冊答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹