已知點
,
的坐標分別為
,
.直線
,
相交于點
,且它們的斜率之積是
,記動點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設
是曲線
上的動點,直線
,
分別交直線
于點
,線段
的中點為
,求直線
與直線
的斜率之積的取值范圍;
(3)在(2)的條件下,記直線
與
的交點為
,試探究點
與曲線
的位置關系,并說明理由.
試題分析:本題主要考查橢圓的標準方程、點斜式求直線方程、中點坐標公式等基礎知識,考查學生的分析問題解決問題的能力、計算能力.第一問,設出P點坐標,利用斜率公式,求出直線AP、BP的斜率,計算得到曲線C的方程;第二問,設出Q點坐標,利用點斜式寫出直線AQ的方程,它與x=4交于M,則聯(lián)立得到M點坐標,同理得到N點坐標,利用中點坐標公式得到
后,將Q點橫坐標
的范圍代入直接得到所求范圍;第三問,結合第二問得到直線AN和直線BM的方程,令2個方程聯(lián)立,得到T點坐標,通過計算知T點坐標符合曲線C的方程,所以點T在曲線C上.
(1)設動點
,則
(
且
)
所以曲線
的方程為
(
). 4分
(2)法一:設
,則直線
的方程為
,令
,則得
,直線
的方程為
,
令
,則得
, 6分
∵
=
∴
,∴
8分
故
∵
,∴
,
∴,
∴
,
∴直線
與直線
的斜率之積的取值范圍為
10分
法二:設直線
的斜率為
,則由題可得直線
的斜率為
,
所以直線
的方程為
,令
,則得
,
直線
的方程為
,令
,則得
,
∴
,
∴
8分
故
∴直線
與直線
的斜率之積的取值范圍為
10分
(3)法一:由(2)得
,
,
則直線
的方程為
,直線
的方程為
, 12分
由
,解得
即
12分
∴
∴ 點
在曲線
上. 14分
法二:由(2)得
,
∴
,
12分
∴
∴ 點
在曲線
上. 14分
法三:由(2)得,
,
,
∴
,
12分
∴
∴ 點
在曲線
上. 14分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的一個焦點在拋物線
的準線上,則該橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
過點
,兩個焦點為
,
.
(1)求橢圓
的方程;
(2)
,
是橢圓
上的兩個動點,如果直線
的斜率與
的斜率互為相反數(shù),證明直線
的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓
:
的左頂點為
,直線
交橢圓
于
兩點(
上
下),動點
和定點
都在橢圓
上.
(1)求橢圓方程及四邊形
的面積.
(2)若四邊形
為梯形,求點
的坐標.
(3)若
為實數(shù),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C過點
,兩焦點為
、
,
是坐標原點,不經(jīng)過原點的直線
與該橢圓交于兩個不同點
、
,且直線
、
、
的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;
(2)求直線
的斜率
;
(3)求
面積的范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
的左、右焦點分別為
,上頂點為A,在x軸負半軸上有一點B,滿足
三點的圓與直線
相切.
(1)求橢圓C的方程;
(2)過右焦點
作斜率為k的直線
與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的一個焦點為
,若橢圓上存在一個點
,滿足以橢圓短軸為直徑的圓與線段
相切于該線段的中點,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖F
1.F
2是橢圓
:
與雙曲線
的公共焦點A、B分別是C
1、C
2在第二、四象限的公共點,若四邊形AF
1BF
2為矩形,則C
2的離心率是( )
A.
B.
C.
D.
查看答案和解析>>