2.設(shè)a、b表示兩條直線,α、β表示兩個平面,則下列命題正確的是②③.(填寫所有正確命題的序號)
①若a∥b,a∥α,則b∥α; ②若a∥b,a?α,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.

分析 根據(jù)空間線面位置關(guān)系的判定與性質(zhì)進行判斷.

解答 解:對于①,若b?α,則結(jié)論不成立,故①錯誤;
對于②,∵a∥b,b⊥β,∴a⊥β,
又a?α,∴α⊥β.故②正確;
對于③,設(shè)m,n為α內(nèi)的兩條相交直線,
m′,n′為m,n在β內(nèi)的射影,則m∥m′,n∥n′,
∵a⊥α,∴a⊥m,a⊥n,
∴a⊥m′,a⊥n′,
∴a⊥β,故③正確;
對于④,以正三棱柱ABC-A1B1C1為例說明,
設(shè)側(cè)面ABB1A1為α,底面ABC為β,側(cè)棱CC1為直線a,底面ABC內(nèi)任意一條直線為b,
顯然b與平面β的關(guān)系不確定,故④錯誤;
故答案為:②③.

點評 本題考查了空間線面位置關(guān)系的判斷,應熟記各種判定定理和性質(zhì)定理,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.若角α的終邊經(jīng)過點(-4,3),則sinα的值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)y=2x(0<x<3)的值域為A,函數(shù)y=lg[-(x+a)(x-a-2)](其中a>0)的定義域為B.
(1)當a=4時,求A∩B;
(2)若A⊆B,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.過點(1,2)且與直線2x-y+1=0垂直的直線方程為x+2y-5=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an},{bn}分別滿足a1=1,|an+1-an|=2,且${b_1}=-1,|{\frac{{{b_{n+1}}}}{b_n}}$|=2,其中n∈N*,設(shè)數(shù)列{an},{bn}的前n項和分別為Sn,Tn
(1)若數(shù)列{an},{bn}都是遞增數(shù)列,求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足:存在唯一的正整數(shù)k(k≥2),使得ck<ck-1,則稱數(shù)列{cn}為“k墜點數(shù)列”.
①若數(shù)列{an}為“5墜點數(shù)列”,求Sn;
②若數(shù)列{an}為“p墜點數(shù)列”,數(shù)列{bn}為“q墜點數(shù)列”,是否存在正整數(shù)m使得Sm+1=Tm?若存在,求出m的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow x=k\overrightarrow a+2\overrightarrow b$和$\overrightarrow y=\overrightarrow a-\overrightarrow b$,其中$\overrightarrow a=(-1,2)$,$\overrightarrow b=(4,2)$,k∈R.
(1)當k為何值時,有$\overrightarrow x$∥$\overrightarrow y$;
(2)若向量$\overrightarrow x$與$\overrightarrow y$的夾角為鈍角,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若X是離散型隨機變量,P(X=x1)=$\frac{2}{3}$,P(X=x2)=$\frac{1}{3}$,且x1<x2,又已知E(X)=$\frac{4}{3}$,D(X)=$\frac{2}{9}$,則x1+x2的值為(  )
A.$\frac{5}{3}$B.$\frac{7}{3}$C.3D.$\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.sin15°+cos15°=( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知集合A={1,2,3,4},B={x|x2-x-2>0},則A∩B={3,4}.

查看答案和解析>>

同步練習冊答案