【題目】已知定義在上的數(shù)滿足,當(dāng)時.若關(guān)于的方程有三個不相等的實數(shù)根,則實數(shù)的取值范圍是( )
A.B.
C.D.
【答案】D
【解析】
根據(jù)f(2﹣x)=f(2+x)可知函數(shù)f(x)關(guān)于x=2對稱,利用當(dāng)時,畫出函數(shù)y=f(x)的大致圖象.由題意轉(zhuǎn)化為y=k(x﹣2)+e﹣1與f(x)有三個交點,直線恒過定點(2,e﹣1),再根據(jù)數(shù)形結(jié)合法可得k的取值范圍.
由題意,當(dāng)x≤2時,f(x)=(x﹣1)ex﹣1.f′(x)=xex.
①令f′(x)=0,解得x=0;②令f′(x)<0,解得x<0;③令f′(x)>0,解得0<x≤2.
∴f(x)在(﹣∞,0)上單調(diào)遞減,在(0,2]上單調(diào)遞增,
在x=0處取得極小值f(0)=﹣2.且f(1)=﹣1;x→﹣∞,f(x)→0.
又∵函數(shù)f(x)在R上滿足f(2﹣x)=f(2+x),∴函數(shù)f(x)的圖象關(guān)于x=2對稱.
∴函數(shù)y=f(x)的大致圖象如圖所示:
關(guān)于x的方程f(x)﹣kx+2k﹣e+1=0可轉(zhuǎn)化為f(x)=k(x﹣2)+e﹣1.
而一次函數(shù)y=k(x﹣2)+e﹣1很明顯是恒過定點(2,e﹣1).結(jié)合圖象,當(dāng)k=0時,有兩個交點,不符合題意,
當(dāng)k=e時,有兩個交點,其中一個是(1,﹣1).此時y=f(x)與y=k(x﹣2)+e﹣1正好相切.
∴當(dāng)0<k<e時,有三個交點.同理可得當(dāng)﹣e<k<0時,也有三個交點.
實數(shù)k的取值范圍為:(﹣e,0)∪(0,e).
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某市公益志愿者的年齡分布情況,有關(guān)部門通過隨機抽樣,得到如圖1的頻率分布直方圖.
(1)求a的值,并估計該市公益志愿者年齡的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)世界衛(wèi)生組織確定新的年齡分段,青年是指年齡15~44歲的年輕人.據(jù)統(tǒng)計,該市人口約為300萬人,其中公益志愿者約占總?cè)丝诘?/span>40%.試根據(jù)直方圖估計該市青年公益志愿者的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機在空中的點處對它們進行數(shù)據(jù)測量,在同一時刻測得, .(船只與無人機的大小及其它因素忽略不計)
(1)求此時無人機到甲、丙兩船的距離之比;
(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機抽取100名員工進行5G手機購買意向的調(diào)查,將計劃在今年購買5G手機的員工稱為“追光族",計劃在明年及明年以后才購買5G手機的員工稱為“觀望者”,調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(1)完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為該公司員工屬于“追光族"與“性別"有關(guān);
屬于“追光族" | 屬于“觀望者" | 合計 | |
女性員工 | |||
男性員工 | |||
合計 | 100 |
(2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于“追光族”.現(xiàn)從這10名中隨機抽取3名,記被抽取的3名中屬于“追光族”的人數(shù)為隨機變量X,求的分布列及數(shù)學(xué)期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生假期參與志愿服務(wù)活動的情況,隨機調(diào)查了名男生,名女生,得到他們一周參與志愿服務(wù)活動時間的統(tǒng)計數(shù)據(jù)如右表(單位:人):
超過小時 | 不超過小時 | |
男 | ||
女 |
(1)能否有的把握認(rèn)為該校學(xué)生一周參與志愿服務(wù)活動時間是否超過小時與性別有關(guān)?
(2)以這名學(xué)生參與志愿服務(wù)活動時間超過小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機抽查名學(xué)生,試估計這名學(xué)生中一周參與志愿服務(wù)活動時間超過小時的人數(shù).
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( ).
①在中,若,則是等腰三角形;
②在中,若 ,則
③兩個向量,共線的充要條件是存在實數(shù),使
④等差數(shù)列的前項和公式是常數(shù)項為0的二次函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為實數(shù))的圖像在點處的切線方程為.
(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),證明時, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com