(2013•河池模擬)直線y=kx+3與(x-2)2+(y-3)2=4相交于A、B兩點(diǎn),若|AB|=2
3
,則k
的值是( 。
分析:由圓的方程找出圓心坐標(biāo)與半徑r,利用點(diǎn)到直線的距離公式表示出圓心到直線y=kx+1的距離d,再由弦AB的長(zhǎng)及圓的半徑,利用垂徑定理及勾股定理列出關(guān)于k的方程,求出方程的解即可得到k的值.
解答:解:由圓(x-2)2+(y-3)2=4,得到圓心(2,3),半徑r=2,
∵圓心到直線y=kx+3的距離d=
|2k|
1+k2
,|AB|=2
3
,
∴|AB|=2
r2-d2
,即|AB|2=4(r2-d2),
∴12=4(4-
4k2
1+k2
),解得:k=±
3
3

故選B.
點(diǎn)評(píng):此題考查了直線與圓相交的性質(zhì),涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,垂徑定理,以及勾股定理,當(dāng)直線與圓相交時(shí),常常根據(jù)垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,那么函數(shù)f(x)的圖象最有可能的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)已知數(shù)列{an}滿(mǎn)足a1=1,a2=3,an+2=3an+1-2an(n∈N+
(1)證明:數(shù)列{an+1-an }是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)在如圖所示的四棱錐P-ABCD中,已知 PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).
(Ⅰ)求證:MC∥平面PAD;
(Ⅱ)求證:平面PAC⊥平面PBC;
(Ⅲ)求直線MC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)已知函數(shù)f(x)滿(mǎn)足下面關(guān)系:(1)f(x+
π
2
)=f(x-
π
2
)
(2)當(dāng)x∈(0,π]時(shí) f(x)=-cosx
給出下列四個(gè)命題:
①函數(shù)f(x)為周期函數(shù)      
②函數(shù)f(x)為奇函數(shù)
③函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱(chēng)  
④方程f(x)=lg|x|的解的個(gè)數(shù)是8
其中正確命題的序號(hào)是:
①④
①④
(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河池模擬)函數(shù)f(x)=Asin(ωx+
π
6
)(ω>0)
的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為
π
2
的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的國(guó)像,只需將f(x)的圖象向右平移
π
12
π
12
個(gè)單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案