【題目】已知函數(shù) ,其中a為常數(shù).
(1)若a=1,判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù) 在其定義域上是奇函數(shù),求實數(shù)a的值.
【答案】
(1)解:當a=1時, ,其定義域為R.
此時對任意的x∈R,都有
所以函數(shù)f(x)在其定義域上為奇函數(shù)
(2)解:若函數(shù) 在其定義域上是奇函數(shù),則對定義域內(nèi)的任意x,
有:
整理得:a2e2x﹣1=e2x﹣a2,即:e2x(a2﹣1)=1﹣a2對定義域內(nèi)的任意x都成立.
所以a2=1
當a=1時, ,定義域為R;
當a=﹣1時, ,定義域為(﹣∞,0)∪(0,+∞).
所以實數(shù)a的值為a=1或a=﹣1
【解析】(1)根據(jù)函數(shù)奇偶性的定義進行判斷.(2)根據(jù)函數(shù)是奇函數(shù),建立方程關(guān)系進行求解即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最大值為, 的圖象關(guān)于軸對稱.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設(shè),是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域為?若存在,求實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列4個命題
①“若,則”的否命題是“若,則”;
②若命題,則為真命題;
③“平面向量夾角為銳角,則”的逆命題為真命題;
④“函數(shù)有零點”是“函數(shù)在上為減函數(shù)”的充要條件.
其中正確的命題個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)= ,給出下列命題:
①F(x)=|f(x)|;
②函數(shù)F(x)是偶函數(shù);
③當a<0時,若0<m<n<1,則有F(m)﹣F(n)<0成立;
④當a>0時,函數(shù)y=F(x)﹣2有4個零點.
其中正確命題的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)﹣f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)= ,且g[f(x)]≥k對x∈[﹣1,1]恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們把b除a的余數(shù)r記為r=abmodb,例如4=9bmod5,如圖所示,若輸入a=209,b=77,則循環(huán)體“r←abmodb”被執(zhí)行了次.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等差數(shù)列中, ,其前項和為,等比數(shù)列的各項均為正數(shù), ,且, .
(1)求數(shù)列和的通項公式;
(2)令,設(shè)數(shù)列的前項和為,求()的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若Ai(i=1,2,3,…,n)是△AOB所在平面內(nèi)的點,且 = ,給出下列說法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)點A和點Ai一定共線
·(4)向量 及 在向量 方向上的投影必定相等
其中正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com