【題目】在平面直角坐標(biāo)系xOy中,雙曲線:經(jīng)過點(diǎn),其中一條近線的方程為,橢圓:與雙曲線有相同的焦點(diǎn)橢圓的左焦點(diǎn),左頂點(diǎn)和上頂點(diǎn)分別為F,A,B,且點(diǎn)F到直線AB的距離為.
求雙曲線的方程;
求橢圓的方程.
【答案】(1)(2)
【解析】
由雙曲線經(jīng)過點(diǎn),可得m;再由漸近線方程可得m,n的方程,求得n,即可得到所求雙曲線的方程;
由橢圓的a,b,c的關(guān)系式,求得F,A,B的坐標(biāo),可得直線AB的方程,由點(diǎn)到直線的距離公式,可得a,b的關(guān)系式,解方程可得a,b,進(jìn)而得到所求橢圓方程.
解:雙曲線:經(jīng)過點(diǎn),
可得,
其中一條近線的方程為,可得,
解得,,
即有雙曲線的方程為;
橢圓:與雙曲線有相同的焦點(diǎn),
可得,
橢圓的左焦點(diǎn),左頂點(diǎn)和上頂點(diǎn)分別為,,,
由點(diǎn)F到直線AB:的距離為,可得
,化為,
由解得,,
則橢圓的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在三棱錐中,,是直角三角形,,
,點(diǎn)分別為的中點(diǎn).
(1)求證:;
(2)求直線與平面所成角的大;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
點(diǎn)P是曲線C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)O為中心,將點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線C2.
(Ⅰ)求曲線C1,C2的極坐標(biāo)方程;
(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),設(shè)定點(diǎn)M(2,0),求△MAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,裝2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
(1)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得優(yōu)惠的概率;
(2)若某顧客選擇方案二,請(qǐng)分別計(jì)算該顧客獲得半價(jià)優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;
(3)若小明的購(gòu)物金額為320元,你覺得小明應(yīng)該選取哪個(gè)方案,為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體的棱長(zhǎng)為1.
正方體中哪些棱所在的直線與直線是異面直線?
若M,N分別是 ,的中點(diǎn),求異面直線MN與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為,是橢圓上半部分的動(dòng)點(diǎn),連接和長(zhǎng)軸的左右兩個(gè)端點(diǎn)所得兩直線交正半軸于兩點(diǎn)(點(diǎn)在的上方或重合).
(1)當(dāng)面積最大時(shí),求橢圓的方程;
(2)當(dāng)時(shí),在軸上是否存在點(diǎn)使得為定值,若存在,求點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),過點(diǎn)作斜率為的直線與圓交于,兩點(diǎn).
(1)若圓心到直線的距離為,求的值;
(2)求線段中點(diǎn)的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com