【題目】設(shè)函數(shù)f(x)=emx+x2﹣mx.
(1)證明:f(x)在(﹣∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增;
(2)若對(duì)于任意x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范圍.
【答案】
(1)證明:f′(x)=m(emx﹣1)+2x.
若m≥0,則當(dāng)x∈(﹣∞,0)時(shí),emx﹣1≤0,f′(x)<0;當(dāng)x∈(0,+∞)時(shí),emx﹣1≥0,f′(x)>0.
若m<0,則當(dāng)x∈(﹣∞,0)時(shí),emx﹣1>0,f′(x)<0;當(dāng)x∈(0,+∞)時(shí),emx﹣1<0,f′(x)>0.
所以,f(x)在(﹣∞,0)時(shí)單調(diào)遞減,在(0,+∞)單調(diào)遞增
(2)解:由(1)知,對(duì)任意的m,f(x)在[﹣1,0]單調(diào)遞減,在[0,1]單調(diào)遞增,故f(x)在x=0處取得最小值.
所以對(duì)于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要條件是
即
設(shè)函數(shù)g(t)=et﹣t﹣e+1,則g′(t)=et﹣1.
當(dāng)t<0時(shí),g′(t)<0;當(dāng)t>0時(shí),g′(t)>0.故g(t)在(﹣∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增.
又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故當(dāng)t∈[﹣1,1]時(shí),g(t)≤0.
當(dāng)m∈[﹣1,1]時(shí),g(m)≤0,g(﹣m)≤0,即合式成立;
當(dāng)m>1時(shí),由g(t)的單調(diào)性,g(m)>0,即em﹣m>e﹣1.
當(dāng)m<﹣1時(shí),g(﹣m)>0,即e﹣m+m>e﹣1.
綜上,m的取值范圍是[﹣1,1]
【解析】(1)利用f′(x)≥0說(shuō)明函數(shù)為增函數(shù),利用f′(x)≤0說(shuō)明函數(shù)為減函數(shù).注意參數(shù)m的討論;(2)由(1)知,對(duì)任意的m,f(x)在[﹣1,0]單調(diào)遞減,在[0,1]單調(diào)遞增,則恒成立問(wèn)題轉(zhuǎn)化為最大值和最小值問(wèn)題.從而求得m的取值范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長(zhǎng)為1,E、F分別是棱AA′,CC′的中點(diǎn),過(guò)直線(xiàn)EF的平面分別與棱BB′、DD′交于M、N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①平面MENF⊥平面BDD′B′;
②當(dāng)且僅當(dāng)x= 時(shí),四邊形MENF的面積最;
③四邊形MENF周長(zhǎng)l=f(x),x∈0,1]是單調(diào)函數(shù);
④四棱錐C′﹣MENF的體積v=h(x)為常函數(shù);
以上命題中真命題的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校甲、乙、丙、丁四個(gè)專(zhuān)業(yè)分別有150、150、400、300名學(xué)生,為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個(gè)專(zhuān)業(yè)共抽取40名學(xué)生進(jìn)行調(diào)查,應(yīng)在丙專(zhuān)業(yè)抽取的學(xué)生人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y2=2px的焦點(diǎn)與雙曲線(xiàn) 的右焦點(diǎn)重合.
(1)求拋物線(xiàn)的方程;
(2)求拋物線(xiàn)的準(zhǔn)線(xiàn)與雙曲線(xiàn)的漸近線(xiàn)圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx+c在點(diǎn)x=2處取得極值c﹣16.
(1)求a,b的值;
(2)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線(xiàn),曲線(xiàn).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,曲線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標(biāo)方程;
(2)與交于不同的四點(diǎn),這四點(diǎn)在上排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代太極圖是一種優(yōu)美的對(duì)稱(chēng)圖.如果一個(gè)函數(shù)的圖像能夠?qū)A的面積和周長(zhǎng)分成兩個(gè)相等的部分,我們稱(chēng)這樣的函數(shù)為圓的“太極函數(shù)”.下列命題中錯(cuò)誤命題的個(gè)數(shù)是( )
對(duì)于任意一個(gè)圓其對(duì)應(yīng)的太極函數(shù)不唯一;
如果一個(gè)函數(shù)是兩個(gè)圓的太極函數(shù),那么這兩個(gè)圓為同心圓;
圓的一個(gè)太極函數(shù)為;
圓的太極函數(shù)均是中心對(duì)稱(chēng)圖形;
奇函數(shù)都是太極函數(shù);
偶函數(shù)不可能是太極函數(shù).
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)且.
(1)若函數(shù)區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù), 為自然對(duì)數(shù)的底數(shù).若存在,使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績(jī)?cè)?0~70分的頻率是多少;
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少;
(3)求成績(jī)?cè)?0~100分的學(xué)生人數(shù)是多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com