分析 ①,一個命題的否命題與它的逆命題真假是等價的;
②,$\left\{\begin{array}{l}x>1\\ y>2\end{array}\right.$⇒$\left\{\begin{array}{l}x+y>3\\ xy>2\end{array}\right.$,$\left\{\begin{array}{l}x+y>3\\ xy>2\end{array}\right.$不能推出$\left\{\begin{array}{l}x>1\\ y>2\end{array}\right.$;
③,在△ABC中,“∠B=60°”⇒”2∠B=∠A+∠C“;“∠A,∠B,∠C⇒“∠B=60°”;
④,依據(jù)“am2<bm2”可知m2≠0⇒“a<b”,但由“a<b”不能推出“am2<bm2”,因為m2可能為0.
解答 解:對于①,一個命題的否命題與它的逆命題真假等價的,故正確;
對于②,$\left\{\begin{array}{l}x>1\\ y>2\end{array}\right.$⇒$\left\{\begin{array}{l}x+y>3\\ xy>2\end{array}\right.$,$\left\{\begin{array}{l}x+y>3\\ xy>2\end{array}\right.$不能推出$\left\{\begin{array}{l}x>1\\ y>2\end{array}\right.$,故錯;
對于③,在△ABC中,“∠B=60°”⇒”2∠B=∠A+∠C“;“∠A,∠B,∠C⇒“∠B=60°”,故正確;
對于④,依據(jù)“am2<bm2”可知m2≠0⇒“a<b”,但由“a<b”不能推出“am2<bm2”,因為m2可能為0,故錯.
故答案為:②④.
點評 本題考查了命題真假的判定,涉及到了,大量的基礎(chǔ)知識,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | ||
C. | 直線與圓相交但不經(jīng)過圓心 | D. | 直線經(jīng)過圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1+\sqrt{6}$ | B. | $1+2\sqrt{2}$ | C. | $1+3\sqrt{2}$ | D. | $1+3\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com