18.等比數(shù)列{an}各項(xiàng)為正數(shù),a10a11=e5,則lna1+lna2+…+lna20=50.

分析 根據(jù)等比數(shù)列的性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì)即可求出.

解答 解:等比數(shù)列{an}各項(xiàng)為正數(shù),a10a11=e5
∴a1a20=a2a19=…=a10a11=e5,
∴l(xiāng)na1+lna2+…+lna20=lna1×a2×…a20=ln(e510=50,
故答案為:50.

點(diǎn)評(píng) 本題主要考查了等比數(shù)列性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用反證法證明命題“三角形中最多只有一個(gè)內(nèi)角是直角”時(shí),應(yīng)假設(shè)為( 。
A.沒有一個(gè)內(nèi)角是直角B.有兩個(gè)內(nèi)角是直角
C.有三個(gè)內(nèi)角是直角D.至少有兩個(gè)內(nèi)角是直角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sin2α=$\frac{1}{2}$,且α∈(0,$\frac{π}{4}$),則sinα-cosα等于(  )
A.$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過棱錐各側(cè)棱中點(diǎn)的截面叫做中截面,類比三角形中位線定理“A1B1∥AB且A1B1=$\frac{1}{2}$AB”,可得三棱錐中截面的性質(zhì)定理:截面A1B1C1∥截面ABC且截面A1B1C1的面積大于截面ABC的面積的$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.{an}是首項(xiàng)為1,公差為5的等差數(shù)列,如果an=2016,則序號(hào)n等于( 。
A.403B.404C.405D.406

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)若2Sn=3n+3.求{an}的通項(xiàng)公式;
(Ⅱ)若a1=1,an+1-an=2n(n∈N*),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a1=2,an+1=$\frac{n+1}{n}{a_n}$,則a2016=( 。
A.504B.1008C.2016D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0與點(diǎn)A(2,0),若直線l上存在點(diǎn)M滿足|MA|=2|MO|(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是[$\frac{2-4\sqrt{2}}{3}$,$\frac{2+4\sqrt{2}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a9+a13=8-ka11,S21=21,則k=6.

查看答案和解析>>

同步練習(xí)冊答案