【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,

附:對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:

1)根據(jù)散點(diǎn)圖判斷,,哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型(給出判斷即可,不必說(shuō)明理由);

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為,根據(jù)(2)的結(jié)果回答:當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

【答案】1;(2;(3)576.6,66.32.

【解析】

1)由散點(diǎn)圖可以判斷,適合作為年銷售關(guān)于年宣傳費(fèi)用的回歸方程類型;

2)令,先建立關(guān)于的線性回歸方程,再求關(guān)于的回歸方程;(3)由(2)計(jì)算時(shí)年銷售量和年利潤(rùn)的預(yù)報(bào)值的值.

1)由散點(diǎn)圖可以判斷,適合作為年銷售關(guān)于年宣傳費(fèi)用的回歸方程類型;

2)令,先建立關(guān)于的線性回歸方程,

由于,

,

關(guān)于的線性回歸方程為,

關(guān)于的回歸方程為;

3)由(2)知,當(dāng)時(shí),年銷售量的預(yù)報(bào)值為,

年利潤(rùn)的預(yù)報(bào)值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù).

1)若,求函數(shù)在區(qū)間上的最大值;

2)若存在,使得關(guān)于x的方程有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求單調(diào)區(qū)間;

(2)設(shè),證明:上有最小值;設(shè)上的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市場(chǎng)上有一種新型的強(qiáng)力洗衣液,特點(diǎn)是去污速度快.已知每投放,且)個(gè)單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時(shí)間(分鐘)變化的函數(shù)關(guān)系式近似為,其中.若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和.根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于(克/升)時(shí),它才能起到有效去污的作用.

1)當(dāng)一次投放個(gè)單位的洗衣液時(shí),求在分鐘時(shí),洗衣液在水中釋放的濃度.

2)在(1)的情況下,即一次投放個(gè)單位的洗衣液,則有效去污時(shí)間可達(dá)幾分鐘?

3)若第一次投放個(gè)單位的洗衣液,分鐘后再投放個(gè)單位的洗衣液,請(qǐng)你寫出第二次投放之后洗衣液在水中釋放的濃度(克/升)與時(shí)間(分鐘)的函數(shù)關(guān)系式,求出最低濃度,并判斷接下來(lái)的四分鐘是否能夠持續(xù)有效去污.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)和函數(shù),

1)若為偶函數(shù),試判斷的奇偶性;

2)若方程有兩個(gè)不等的實(shí)根,則

①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說(shuō)明理由;

②若方程的兩實(shí)根為求使成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,,,分別為棱,的中點(diǎn).

1)求證:;

2)若,求三棱錐的體積;

3)判斷直線與平面的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在側(cè)棱垂直底面的四棱柱中,,.,,,分別是的中點(diǎn),的交點(diǎn).

(I) 求線段,的長(zhǎng)度;

(II)證明:平面;

(III)與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列中,,對(duì)任意正整數(shù),.

1)求數(shù)列的通項(xiàng)公式;

2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)及公比q的值,若不存在,請(qǐng)說(shuō)明理由;

3)求數(shù)列n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,為等邊三角形,分別為的中點(diǎn),的中點(diǎn),,將沿折起到的位置,使得平面平面

的中點(diǎn),如圖2

1)求證:平面

2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案