設(shè){an}為等差數(shù)列,{bn}為等比數(shù)列,且a1=b1=1,a2+a4=b3,b2b4=a3.分別求出{an}及{bn}的前10項(xiàng)的和S10及T10
分析:利用等差數(shù)列和等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式即可得出.
解答:解:設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,
∵a1=b1=1,a2+a4=b3,b2b4=a3
∴1+d+1+3d=q2,qq3=1+2d,解得
d=-
1
2
q=0
(舍去)或
d=-
3
8
q2=
1
2

an=1+(n-1)×(-
3
8
)
=
11-3n
8
,bn=(±1)n-1•(
1
2
)
n-1
2

∴S10=
1×(1+
11-3n
8
)
2
=
19-3n
16
,T10=
1-(
2
2
)10
1-
2
2
=
31
32
(2+
2
)
T10=
1-(-
2
2
)10
1+
2
2
=
31
32
(2-
2
)
點(diǎn)評(píng):熟練掌握等差數(shù)列和等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)an為等差數(shù)列,bn為等比數(shù)列,且a1=0,若cn=an+bn,且c1=1,c2=1,c3=2.
(1)求an的公差d和bn的公比q;     (2)求數(shù)列cn的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、設(shè){an}為等差數(shù)列,公差d=-2,sn為其前n項(xiàng)和,若s10=s11,則a1=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}為等差數(shù)列,則下列數(shù)列中,成等差數(shù)列的個(gè)數(shù)為( 。
①{an2} ②{pan}、踸pan+q}、躿nan}(p、q為非零常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}為等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S7=7,S15=75.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=C an(注釋:bn等于C的an次方),(其中C為常數(shù),且C≠0,n∈N*),求證:數(shù)列{bn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}為等差數(shù)列,a1>0,a6+a7>0,a6•a7<0則使Sn>0成立的最大的n為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案