2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),$\overrightarrow{c}$=(a,0),且$\overrightarrow{c}$⊥($\overrightarrow{m}$-$\overrightarrow{n}$),則實數(shù)a=( 。
A.1B.0或1C.3D.0或3

分析 根據(jù)向量的坐標運算和向量的垂直計算即可.

解答 解:∵向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),
∴$\overrightarrow{m}$-$\overrightarrow{n}$=(a-1,a-3),
∵$\overrightarrow{c}$=(a,0),且$\overrightarrow{c}$⊥($\overrightarrow{m}$-$\overrightarrow{n}$),
∴$\overrightarrow{c}$•($\overrightarrow{m}$-$\overrightarrow{n}$)=a(a-1)=0,
解得a=0或a=1
故選:B.

點評 本題考查了向量的坐標運算和向量的垂直,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在全班學(xué)生中,選出4名組長的不同選法有m種,選出正、副班長各一名的不同選法有n種,若m:n=13:2,則該班的學(xué)生人數(shù)是( 。
A.10B.15C.20D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x,m,n,y成等差數(shù)列,x,p,q,y成等比數(shù)列,則$\frac{{{{({m+n})}^2}}}{pq}$的取值范圍是(-∞,0]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.作下列函數(shù)的圖象.
(1)y=2x-1,x∈N;
(2)y=$\left\{\begin{array}{l}{2x,0≤x≤4}\\{8,4<x≤8}\\{24-2x,8<x≤12}\end{array}\right.$
(3)y=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}\right.$
(4)y=|x2+2x-8|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測一個橋墩的工程費用為256萬元,距離為x米的相鄰兩墩之間的橋面工程費用為(2+$\sqrt{x}$)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為y萬元.假設(shè)需要新建n個橋墩.
(1)寫出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)當m=640米時,需新建多少個橋墩才能使y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知半徑為2的扇形面積為4,則扇形的角度大小為2弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校為了解一個英語教改實驗班的情況,舉行了一次測試,將該班30位學(xué)生的英語成績進行統(tǒng)計,得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求出該班學(xué)生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(Ⅱ)從成績低于80分的學(xué)生中隨機抽取2人,規(guī)定抽到的學(xué)生成績在[50,60)的記1績點分,在[60,80)的記2績點分,設(shè)抽取2人的總績點分為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在xOy平面上,點A,B在單位圓上,已知A(1,0),∠AOB=θ(0<θ<π)
(Ⅰ)若點B(-$\frac{3}{5}$,$\frac{4}{5}$),求$\frac{sin(π+θ)+cos(\frac{3π}{2}-θ)}{cos(\frac{π}{2}+θ)tan(π-θ)}$的值;
(Ⅱ)若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{18}{13}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=$\frac{x-2}{e^x}$在x=x0處取得極值,則x0=3.

查看答案和解析>>

同步練習(xí)冊答案