【題目】已知函數(shù)f(x)=2xlnx﹣x2+2ax,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),求函數(shù)g(x)的極值;
(2)是否存在常數(shù)a,使得x∈[1,+∞)時(shí),f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,說(shuō)明理由.

【答案】
(1)解:函數(shù)f(x)=2xlnx﹣x2+2ax,(x>0)求導(dǎo),g(x)=f′(x)=2lnx+2﹣2x+2a,(x>0)

g′(x)= ﹣2=﹣ ,(x>0)

當(dāng)0<x<1時(shí),g′(x)>0,當(dāng)x>1時(shí),g′(x)<0,

g(x)在(0,1)單調(diào)遞增;在(1,+∞)單調(diào)遞減,

∴當(dāng)x=1時(shí),取極大值,極大值為g(1)=2a,無(wú)極小值


(2)解:由(1)知:f′(1)=2a>0,且f′(x)在(1,+∞)單調(diào)遞減,且x→+∞時(shí),f′(x)<0,

則必然存在x0>1,使得f(x)在(1,x0)單調(diào)遞增,(x0,+∞)單調(diào)遞減;

且f′(x0)=2lnx0+2﹣2x0+2a=0,即a=﹣lnx0﹣1+x0,①

此時(shí):當(dāng)x∈[1,+∞)時(shí),由題意知:只需要找實(shí)數(shù)a使得f(x)max=f(x0)=0,

f(x0)=2x0lnx0﹣x02+2ax0,將①式代入知:

f(x0)=2x0lnx0﹣x02+2ax0=2x0lnx0﹣x02+2x0(﹣lnx0﹣1+x0)=x02﹣2x0=0,

得到x0=2,從而a=﹣lnx0﹣1+x0=1﹣ln2,

∴a的值為1﹣ln2


【解析】(1)求導(dǎo),求得g(x)=2lnx+2﹣2x+2a,(x>0)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,即可求得函數(shù)g(x)的極值;(2)由(1)可知:必然存在x0>1,使得f(x)在(1,x0)單調(diào)遞增,(x0,+∞)單調(diào)遞減,且f′(x0)=0,求得a的表達(dá)式,存在a使得f(x)max=f(x0)=0,代入即可求得x0,即可求得a的值.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的極值與導(dǎo)數(shù),需要了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(Ⅰ)求證:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P﹣ABC中,底面△ABC滿足BA=BC, ,P在面ABC的射影為AC的中點(diǎn),且該三棱錐的體積為 ,當(dāng)其外接球的表面積最小時(shí),P到面ABC的距離為(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=exa﹣ln(x+a).
(1)當(dāng) 時(shí),求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)a≤1時(shí),證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩曲線y=x2﹣1與y=alnx﹣1存在公切線,則正實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從雙曲線 =1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|﹣|MT|等于(
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2=4ρ(cosθ+sinθ)﹣3.若以極點(diǎn)O為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓C的參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點(diǎn)P(x,y)是圓C上動(dòng)點(diǎn),試求x+2y的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x,y)是曲線C上任意一點(diǎn),點(diǎn)(x,2y)在圓x2+y2=8上,定點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l與曲線C交于A、B兩個(gè)不同點(diǎn).
(1)求曲線C的方程;
(2)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點(diǎn)M,使得二面角M﹣AC﹣D的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案