如圖,在中,是的∠A的平分線,圓經(jīng)過點(diǎn)與切于點(diǎn),與相交于,連結(jié),.
(1)求證:; (2)求證:.
證明見解析.
解析試題分析:(1) 要證兩直線平行,方法較多,最簡(jiǎn)單的方法是證同位角相等、內(nèi)錯(cuò)角相等,象本題由于是的平分線,故,又是圓的切線,因此這兩弧對(duì)應(yīng)的圓周角,弦切角都相等,如,從而就有;(2)要證,一般把它化為線段比相等地,再用相似三角形證明,觀察等式中的線段,又由(1),因此要證等式化為要證,從而我們只要證明,從圖形中易算出這兩個(gè)三角形中有兩對(duì)角相等,這樣就可完成證明.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/57/c/11zel3.png" style="vertical-align:middle;" />是圓的切線,所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/d/172ab4.png" style="vertical-align:middle;" />,且,所以,所以. --5分
(2)連接,中,,
,所以∽,所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/7/2pies.png" style="vertical-align:middle;" />,所以. --10分
考點(diǎn):證明兩直線平行,證明線段成比例.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于點(diǎn)N,過點(diǎn)N的切線交CA的延長(zhǎng)線于P
(1)求證:
(2)若⊙O的半徑為,OA=OM,求MN的長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于點(diǎn)N,過點(diǎn)N的切線交CA的延長(zhǎng)線于P.
(1)求證:;
(2)若⊙O的半徑為,OA=OM,求MN的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,P是O外一點(diǎn),PA是切線,A為切點(diǎn),割線PBC與O相交于點(diǎn)B,C,PC=2PA,D為PC的中點(diǎn),AD的延長(zhǎng)線交O于點(diǎn)E。
證明:(1)BE=EC;
(2)ADDE=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD內(nèi)接于圓,BD是圓的直徑,于點(diǎn)E,DA平分.
(1)證明:AE是圓的切線;
(2)如果,,求CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓與圓交于兩點(diǎn),以為切點(diǎn)作兩圓的切線分別交圓和圓于兩點(diǎn),延長(zhǎng)交圓于點(diǎn),延長(zhǎng)交圓于點(diǎn).已知.
(1)求的長(zhǎng);
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長(zhǎng)線于點(diǎn)E.求證:
(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5。
求:(1)⊙O的半徑;
(2)s1n∠BAP的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com