【題目】等腰三角形ABC,E為底邊BC的中點,沿AE折疊,如圖,將C折到點P的位置,使P﹣AE﹣C為120°,設點P在面ABE上的射影為H.
(1)證明:點H為EB的中點;
(2)若 ,求直線BE與平面ABP所成角的正弦值.

【答案】
(1)證明:依題意,AE⊥BC,則AE⊥EB,AE⊥EP,EB∩EP=E.

∴AE⊥面EPB.

故∠CEP為二面角C﹣AE﹣P的平面角,則點P在面ABE上的射影H在EB上.

由∠CEP=120°得∠PEB=60°.

∴EH= EP=

∴H為EB的中點.


(2)解:過H作HM⊥AB于M,連PM,過H作HN⊥PM于N,連BN,

則有三垂線定理得AB⊥面PHM.即面PHM⊥面PAB,

∴HN⊥面PAB.故HB在面PAB上的射影為NB.

∴∠HBN為直線BE與面ABP所成的角.

依題意,BE= BC=2,BH= BE=1.

在△HMB中,HM= ,

在△EPB中,PH= ,

∴在Rt△PHM中,HN=

∴sin∠HBN=


【解析】(1)證明:∠CEP為二面角C﹣AE﹣P的平面角,則點P在面ABE上的射影H在EB上,即可證明點H為EB的中點;(2)過H作HM⊥AB于M,連PM,過H作HN⊥PM于N,連BN,則有三垂線定理得AB⊥面PHM.即面PHM⊥面PAB,HN⊥面PAB.故HB在面PAB上的射影為NB,∠HBN為直線BE與面ABP所成的角,即可求直線BE與平面ABP所成角的正弦值.
【考點精析】利用空間角的異面直線所成的角對題目進行判斷即可得到答案,需要熟知已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設Sn , Tn分別是數(shù)列{an},{bn}的前n項和,已知對于任意n∈N* , 都有3an=2Sn+3,數(shù)列{bn}是等差數(shù)列,且T5=25,b10=19. (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設cn= ,求數(shù)列{cn}的前n項和Rn , 并求Rn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實數(shù)m的最大值為M.
(1)求M的值;
(2)正數(shù)a,b,c滿足a+2b+c=M,求證: + ≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,
(Ⅰ)若c2=5a2+ab,求 ;
(Ⅱ)求sinAsinB的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】G為△ADE的重心,點P為△DEG內(nèi)部(含邊界)上任一點,B,C均為AD,AE上的三等分點(靠近點A), (α,β∈R),則α+ β的范圍是(
A.[1,2]
B.[1, ]
C.[ ,2]
D.[ ,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式的解集為 , 且函數(shù)在區(qū)間上不是單調(diào)函數(shù),則實數(shù)m的取值范圍為 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知由正數(shù)組成的等比數(shù)列{an}中,公比q="2," a1·a2·a3·…·a30=245, 則a1·a4·a7·…·a28= ( )
A.25
B.210
C.215
D.220

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村投資128萬元建起了一處生態(tài)采摘園,預計在經(jīng)營過程中,第一年支出10萬元,以后每年支出都比上一年增加4萬元,從第一年起每年的銷售收入都為76萬元.設y表示前n(n∈N*)年的純利潤總和(利潤總和=經(jīng)營總收入﹣經(jīng)營總支出﹣投資).
(1)該生態(tài)園從第幾年開始盈利?
(2)該生態(tài)園前幾年的年平均利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ x2在x=﹣1處取得極大值,記g(x)= .程序框圖如圖所示,若輸出的結果S> ,則判斷框中可以填入的關于n的判斷條件是(

A.n≤2014?
B.n≤2015?
C.n>2014?
D.n>2015?

查看答案和解析>>

同步練習冊答案