3.已知函數(shù)f(x)=2${\;}^{1+{x^2}}}$-$\frac{1}{{1+{x^2}}}$,則使得f(2x)>f(x-3)成立的x的取值范圍是( 。
A.(-∞,-3)B.(1,+∞)C.(-3,-1)D.(-∞,-3)∪(1,+∞)

分析 判斷函數(shù)f(x)為偶函數(shù),討論x>0時,f(x)為增函數(shù),再由偶函數(shù)的性質(zhì):f(|x|)=f(x),以及單調(diào)性,可得|2x|>|x-3|,解不等式即可得到所求解集.

解答 解:函數(shù)f(x)=2${\;}^{1+{x^2}}}$-$\frac{1}{{1+{x^2}}}$,
有f(-x)=f(x),f(x)為偶函數(shù),
當(dāng)x>0時,可得y=2${\;}^{1+{x}^{2}}$遞增,y=-$\frac{1}{{1+{x^2}}}$遞增.
則f(x)在(0,+∞)遞增,
且有f(|x|)=f(x),
則f(2x)>f(x-3)即為f(|2x|)>f(|x-3|),
即|2x|>|x-3|,
則|2x|2>|x-3|2
即為(x+3)(3x-3)>0,
解得x>1或x<-3.
故選:D.

點(diǎn)評 本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,注意運(yùn)用復(fù)合函數(shù)的單調(diào)性和偶函數(shù)的性質(zhì),考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式$\frac{3x-1}{2-x}$≥0的解集是( 。
A.{x|$\frac{3}{4}$≤x<2}B.{x|$\frac{1}{3}≤x<2$}C.{x|x>2或$x<\frac{1}{3}$}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={x|x>1},B={x|x≤2},則A∩B=( 。
A.{x|1<x<2}B.{x|x>1或x≤2}C.{x|1<x≤2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題中,
①對于命題p:?x∈R,使得x2+x-1<0,則¬p:?x∈R,均有x2+x-1>0;
②p是q的必要不充分條件,則¬p是¬q的充分不必要條件;
③命題“若sinx≠siny,則x≠y”為真命題;
④lgx>lgy,是x>y的充要條件.
所有正確命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<a<1,b>-1則函數(shù)y=ax+b的圖象必不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x2+2bx,g(x)=|x-1|,若對任意x1,x2∈[0,2],當(dāng)x1<x2時都有f(x1)-f(x2)<g(x1)-g(x2),則實(shí)數(shù)b的最小值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列函數(shù):①f(x)=3|x|,②f(x)=x3,③f(x)=ln$\frac{1}{|x|}$,④f(x)=x${\;}^{\frac{4}{3}}}$,⑤f(x)=-x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為③⑤.(寫出符合要求的所有函數(shù)的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A,B,C,D是空間四點(diǎn),甲:A,B,C,D四點(diǎn)不共面,乙:直線AC和BD不相交.①若甲,則乙;②若乙,則甲,則(  )
A.①成立,②不成立B.①不成立,②成立C.①②都成立D.①②都不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)復(fù)數(shù)z滿足關(guān)系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i,|z|=$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊答案