7.已知數(shù)列an=$\left\{{\begin{array}{l}{\frac{9}{2},n=1}\\{{3^n},n≥2}\end{array}}$,記數(shù)列{an}的前n項(xiàng)和為Tn,若對任意的n∈N*都有Tn•k≥3n-6恒成立,則實(shí)數(shù)k的取值范圍k≥$\frac{2}{27}$.

分析 根據(jù)等比數(shù)列的前n項(xiàng)和公式得到Tn,分離參數(shù),設(shè)cn=$\frac{2n-4}{{3}^{n}}$,利用作差確定數(shù)列{cn}的單調(diào)性,求出數(shù)列的最大值即可

解答 解:當(dāng)n=1時(shí),Tn=$\frac{9}{2}$,
當(dāng)n≥2時(shí),Tn=a1+a2+…+an=$\frac{9}{2}$+$\frac{9(1-{3}^{n-1})}{1-3}$=$\frac{1}{2}$×3n+1,
∵對任意的n∈N*都有Tn•k≥3n-6恒成立,
∴$\frac{1}{2}$×3n+1•k≥3n-6,
∴k≥$\frac{2n-4}{{3}^{n}}$,
設(shè)cn=$\frac{2n-4}{{3}^{n}}$,
則cn+1-cn=$\frac{2(n+1)-4}{{3}^{n+1}}$-$\frac{2n-4}{{3}^{n}}$=$\frac{2(5-2n)}{{3}^{n+1}}$
當(dāng)n≤2時(shí),cn+1>cn,當(dāng)n≥3時(shí),cn+1<cn
∴cn的最大項(xiàng)是c3=$\frac{2}{27}$,
∴k≥$\frac{2}{27}$,
故答案為:k≥$\frac{2}{27}$

點(diǎn)評 本題考查了an與Tn的關(guān)系,以及等比數(shù)列的前n項(xiàng)和公式,數(shù)列的恒成立轉(zhuǎn)化為求數(shù)列的最大項(xiàng)問題,通過作差研究數(shù)列的單調(diào)性也是常用的方法,難度較大,一定要注意n的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知函數(shù)f(x)=13-8x+$\sqrt{2}$x2,且f′(x0)=4,求x0的值.
(2)已知函數(shù)f(x)=x2+2xf′(0),求f′(0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f(x)=$\frac{sinx}{x}$,則f′(π)的值為( 。
A.$-\frac{1}{π}$B.$\frac{1}{π}$C.$-\frac{1}{π^2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,$\overrightarrow{CA}$=$\vec a$,$\overrightarrow{CB}$=$\vec b$,D、E分別是CA、CB的中點(diǎn),$\overrightarrow{DE}$=( 。
A.$\vec a$-$\vec b$B.$\vec b$-$\vec a$C.$\frac{1}{2}$($\vec a$-$\vec b$)D.$\frac{1}{2}$($\vec b$-$\vec a$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\frac{{\sqrt{3}tan{{12}°}-3}}{{4{{cos}^2}{{12}°}sin{{12}°}-2sin{{12}°}}}$等于$-4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平行四邊形ABCD中,E為AB的中點(diǎn),$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,則下列向量表示錯(cuò)誤的是(  )
A.$\overrightarrow{AC}$=$\overrightarrow a$+$\overrightarrow b$B.$\overrightarrow{BD}$=$\overrightarrow a$-$\overrightarrow b$C.$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow a$D.$\overrightarrow{CB}$=-$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=3x2-2x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)都在函數(shù)圖象上,令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn為數(shù)列{bn}的前n項(xiàng)和,使得Tn<$\frac{m}{20}$對任意的n∈N*恒成立的最小正整數(shù)m為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,若z1=2+i,z2=1+i,則z=z1•$\overline{z_2}$在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙兩人進(jìn)行定點(diǎn)投籃游戲,投籃者若投中.則繼續(xù)投籃,否則由對方投籃,第-次由甲投籃;已知每次投籃甲、乙命中的概率分別為$\frac{1}{3}$,$\frac{3}{4}$.
(1)求第三次由乙投籃的概率;
(2)在前3次投籃中,乙投籃的次數(shù)為ξ.求ξ的分布列、期望及標(biāo)準(zhǔn)差.

查看答案和解析>>

同步練習(xí)冊答案