在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是線段A1B1,B1C1上的不與端點(diǎn)重合的動(dòng)點(diǎn),如果A1E=B1F,有下面四個(gè)結(jié)論:
①EF⊥AA1;②EF∥AC;③EF與AC異面;④EF∥平面ABCD.其中一定正確的有( 。
分析:作出正方體ABCD-A1B1C1D1,利用正方體的結(jié)構(gòu)特征,結(jié)合題設(shè)條件,能夠作出正確判斷.
解答:解:如圖所示.由于AA1⊥平面A1B1C1D1,EF?平面A1B1C1D1,
則EF⊥AA1,所以①正確;
當(dāng)E,F(xiàn)分別不是線段A1B1,B1C1的中點(diǎn)時(shí),EF與AC異面,
所以②不正確;
當(dāng)E,F(xiàn)分別是線段A1B1,B1C1的中點(diǎn)時(shí),EF∥A1C1,又AC∥A1C1
則EF∥AC,所以③不正確;
由于平面A1B1C1D1∥平面ABCD,EF?平面A1B1C1D1,
所以EF∥平面ABCD,所以④正確.
故選D.
點(diǎn)評(píng):本題考查命題的真假判斷及其應(yīng)用,解題時(shí)要認(rèn)真審題,注意正方體的結(jié)構(gòu)特征的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線BD′的一個(gè)平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結(jié)論正確的為
①③④
.(寫出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點(diǎn),則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點(diǎn). 
(1)若M為BB′的中點(diǎn),證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案