【題目】甲、乙兩隊(duì)參加奧運(yùn)知識(shí)競(jìng)賽,每隊(duì)3人,每人回答一個(gè)問(wèn)題,答對(duì)者對(duì)本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 ,且各人回答正確與否相互之間沒(méi)有影響.用ξ表示甲隊(duì)的總得分.
(Ⅰ)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)用A表示“甲、乙兩個(gè)隊(duì)總得分之和等于3”這一事件,用B表示“甲隊(duì)總得分大于乙隊(duì)總得分”這一事件,求P(AB).
【答案】解:(Ⅰ)解法一:由題意知,ξ的可能取值為0,1,2,3,且 , , , .
所以ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P |
ξ的數(shù)學(xué)期望為 .
解法二:根據(jù)題設(shè)可知, ,
因此ξ的分布列為 ,k=0,1,2,3.
因?yàn)? ,所以 .
(Ⅱ)解法一:用C表示“甲得2分乙得1分”這一事件,用D表示“甲得3分乙得0分”這一事件,所以AB=C∪D,且C,D互斥,又 = , ,
由互斥事件的概率公式得 .
解法二:用Ak表示“甲隊(duì)得k分”這一事件,用Bk表示“乙隊(duì)得k分”這一事件,k=0,1,2,3.
由于事件A3B0,A2B1為互斥事件,故有P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).
由題設(shè)可知,事件A3與B0獨(dú)立,事件A2與B1獨(dú)立,因此P(AB)=P(A3B0)+P(A2B1)=P(A3)P(B0)+P(A2)P(B1)= .
【解析】(1)解法一:由題意知,ξ的可能取值為0,1,2,3,求出相對(duì)應(yīng)的概率列出分布列即可,解法二:根據(jù)題設(shè)可知, ξ ~ B ( 3 , ),E ξ = 3 × = 2,(2)解法一:用C表示“甲得2分乙得1分”這一事件,用D表示“甲得3分乙得0分”這一事件,所以AB=C∪D,互斥事件的概率公式得 P ( A B ),解法二:用Ak表示“甲隊(duì)得k分”這一事件,用Bk表示“乙隊(duì)得k分”這一事件,可計(jì)算出概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若直線(xiàn)g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線(xiàn),求a+b的最小值;
(3)當(dāng)b=0時(shí),若f(x)與g(x)的圖象有兩個(gè)交點(diǎn)A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 .
(取e為2.8,取ln2為0.7,取 為1.4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,頂角D1在底面ABCD內(nèi)的射影恰好為點(diǎn)C.
(1)求證:AD1⊥BC;
(2)若直線(xiàn)DD1與直線(xiàn)AB所成角為 ,求平面ABC1D1與平面ABCD所成角(銳角)的余弦值函數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x,y∈R,定義xy=x(a﹣y)(a∈R,且a為常數(shù)),若f(x)=ex , g(x)=e﹣x+2x2 , F(x)=f(x)g(x).
①g(x)不存在極值;
②若f(x)的反函數(shù)為h(x),且函數(shù)y=kx與函數(shù)y=|h(x)|有兩個(gè)交點(diǎn),則k= ;
③若F(x)在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是(﹣∞,﹣2];
④若a=﹣3,在F(x)的曲線(xiàn)上存在兩點(diǎn),使得過(guò)這兩點(diǎn)的切線(xiàn)互相垂直.
其中真命題的序號(hào)有 . (把所有真命題序號(hào)寫(xiě)上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖的程序框圖,若程序運(yùn)行中輸出的一組數(shù)是(x,﹣12),則x的值為( 。
A.27
B.81
C.243
D.729
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(2x+ ),將y=f(x)的圖象上所有的點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍,縱坐標(biāo)不變;再把所得的圖象向右平移|φ|個(gè)單位長(zhǎng)度,所得的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則φ的一個(gè)值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax(lnx﹣1)(a≠0).
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a>0時(shí),設(shè)函數(shù)g(x)= x3﹣f(x),函數(shù)h(x)=g′(x),
①若h(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
②證明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某油庫(kù)的設(shè)計(jì)容量是30萬(wàn)噸,年初儲(chǔ)量為10萬(wàn)噸,從年初起計(jì)劃每月購(gòu)進(jìn)石油m萬(wàn)噸,以滿(mǎn)足區(qū)域內(nèi)和區(qū)域外的需求,若區(qū)域內(nèi)每月用石油1萬(wàn)噸,區(qū)域外前x個(gè)月的需求量y(萬(wàn)噸)與x的函數(shù)關(guān)系為y= (p>0,1≤x≤16,x∈N*),并且前4個(gè)月,區(qū)域外的需求量為20萬(wàn)噸.
(1)試寫(xiě)出第x個(gè)月石油調(diào)出后,油庫(kù)內(nèi)儲(chǔ)油量M(萬(wàn)噸)與x的函數(shù)關(guān)系式;
(2)要使16個(gè)月內(nèi)每月按計(jì)劃購(gòu)進(jìn)石油之后,油庫(kù)總能滿(mǎn)足區(qū)域內(nèi)和區(qū)域外的需求,且每月石油調(diào)出后,油庫(kù)的石油剩余量不超過(guò)油庫(kù)的容量,試確定m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SA=SC,AB⊥AC,D為BC的中點(diǎn),E為AC上一點(diǎn),且DE∥平面SAB.求證:
(1)直線(xiàn)AB∥平面SDE;
(2)平面ABC⊥平面SDE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com