設函數(shù)的定義域為,若滿足:①內(nèi)是單調(diào)函數(shù); ②存在,使得上的值域為,那么就稱是定義域為的“成功函數(shù)”.若函數(shù)是定義域為的“成功函數(shù)”,則的取值范圍為 (  )
A.B.C.D.
C

試題分析:無論,還是,都有是增函數(shù), 故,所以方程有兩個根,即有兩個根,設,則直線與函數(shù)有兩個交點,畫出這兩個圖象可以看出的取值范圍是,顯然此時函數(shù)定義域為,選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納a元(a為常數(shù),2≤a≤5)的管理費,根據(jù)多年的統(tǒng)計經(jīng)驗,預計當每件產(chǎn)品的售價為x元時,產(chǎn)品一年的銷售量為(e為自然對數(shù)的底數(shù))萬件,已知每件產(chǎn)品的售價為40元時,該產(chǎn)品一年的銷售量為500萬件.經(jīng)物價部門核定每件產(chǎn)品的售價x最低不低于35元,最高不超過41元.
(Ⅰ)求分公司經(jīng)營該產(chǎn)品一年的利潤L(x)萬元與每件產(chǎn)品的售價x元的函數(shù)關系式;
(Ⅱ)當每件產(chǎn)品的售價為多少元時,該產(chǎn)品一年的利潤L(x)最大,并求出L(x)的最大值.
參考公式:為常數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

為實常數(shù),是定義在R上的奇函數(shù),當時,.若“,”是假命題,則的取值范圍為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

有兩個投資項目、,根據(jù)市場調(diào)查與預測,A項目的利潤與投資成正比,其關系如圖甲,B項目的利潤與投資的算術平方根成正比,其關系如圖乙.(注:利潤與投資單位:萬元)

(1)分別將A、B兩個投資項目的利潤表示為投資x(萬元)的函數(shù)關系式;
(2)現(xiàn)將萬元投資A項目, 10-x萬元投資B項目.h(x)表示投資A項目所得利潤與投資B項目所得利潤之和.求h(x)的最大值,并指出x為何值時,h(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)有兩個極值點,且,則            (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若關于的方程有四個不同的實數(shù)解,則的取值范圍為         (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)的定義域和值域都是),則常數(shù)的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,其中、為常數(shù),且,若為常數(shù),則的值為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù) ,給出下列命題:
(1)必是偶函數(shù);
(2)當時,的圖象關于直線對稱;
(3)若,則在區(qū)間上是增函數(shù);
(4)有最大值.
其中正確的命題序號是(     )
A.(3)B.(2)(3)C.(3)(4)D.(1)(2)(3)

查看答案和解析>>

同步練習冊答案