【題目】已知函數(shù) .
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求證: ;
(Ⅲ)判斷曲線是否位于軸下方,并說明理由.
【答案】(Ⅰ);(Ⅱ)見解析;(Ⅲ)見解析.
【解析】試題分析:(1)求導(dǎo),得到切線斜率,利用點(diǎn)斜式得到直線的方程;(2)“要證明”等價(jià)于“”,構(gòu)造新函數(shù)確定函數(shù)的最小值大于等于;(3)曲線是位于軸下方即證明),利用(Ⅱ)可知,轉(zhuǎn)證即可.
試題解析:
函數(shù)的定義域?yàn)?/span>,
.
(Ⅰ),又,
曲線在處的切線方程為
,
即.
(Ⅱ)“要證明”等價(jià)于“”
設(shè)函數(shù).
令,解得.
因此,函數(shù)的最小值為.故.
即.
(Ⅲ)曲線位于軸下方. 理由如下:
由(Ⅱ)可知,所以.
設(shè),則.
令得;令得.
所以在上為增函數(shù), 上為減函數(shù).
所以當(dāng)時(shí), 恒成立,當(dāng)且僅當(dāng)時(shí), .
又因?yàn)?/span>, 所以恒成立.
故曲線位于軸下方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),若函數(shù)有三個(gè)不同的零點(diǎn),求的取值范圍;
(3)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,當(dāng)時(shí),若在內(nèi)恒成立,則稱為函數(shù)的“類對(duì)稱點(diǎn)”,請(qǐng)你探究當(dāng)時(shí),函數(shù)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“類對(duì)稱點(diǎn)” 的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子里有編號(hào)為的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號(hào)的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號(hào).
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據(jù)以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號(hào)球 B. 一定沒有3號(hào)球 C. 可能有5號(hào)球 D. 可能有6號(hào)球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列是正整數(shù)的任一排列,且同時(shí)滿足以下兩個(gè)條件:
①;②當(dāng)時(shí), ().
記這樣的數(shù)列個(gè)數(shù)為.
(I)寫出的值;
(II)證明不能被4整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,其公差為﹣2,且a7是a3與a9的等比中項(xiàng),Sn為{an}的前n項(xiàng)和,n∈N* , 則S10的值為( )
A.﹣110
B.﹣90
C.90
D.110
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com