【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .

1)求證:

2)求二面角的余弦值.

【答案】(1)證明見解析;(2) .

【解析】試題分析:

(1)由題意結(jié)合角的關(guān)系可得, ,由線面垂直的性質(zhì)可得平面, .

(2)結(jié)合(1)的結(jié)論可知兩兩垂直,以為坐標(biāo)原點(diǎn),分別以所在的直線為軸, 軸, 軸建立空間直角坐標(biāo)系,計算可得平面的一個法向量為,是平面的一個法向量,據(jù)此計算可得二面角的余弦值為.

試題解析:

1)證明:因為四邊形是等腰梯形, , .所以.

,所以,因此, ,

平面, ,所以, ,

所以平面;所以.

2)由(1)知, ,同理

平面,因此兩兩垂直,以為坐標(biāo)原點(diǎn),分別以所在的直線為軸, 軸, 軸建立如圖的空間直角坐標(biāo)系,

不妨設(shè),則, , , ,因此, .

設(shè)平面的一個法向量為,則, ,,

所以,取,則

由于是平面的一個法向量,

, ,

所以二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(每位同學(xué)被選到的可能性相同).

(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;

(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個極值,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)準(zhǔn)備推出一種花卉植物用于美化城市環(huán)境,為評估花卉的生長水平,現(xiàn)對該花卉植株的高度(單位:厘米)進(jìn)行抽查,所得數(shù)據(jù)分組為,據(jù)此制作的頻率分布直方圖如圖所示.

1)求出直方圖中的值;

2利用直方圖估算花卉植株高度的中位數(shù);

3若樣本容量為32,現(xiàn)準(zhǔn)備從高度在的植株中繼續(xù)抽取2顆做進(jìn)一步調(diào)查,求抽取植株來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,上頂點(diǎn)為為坐標(biāo)原點(diǎn),橢圓的離心率的面積為.

(1)求橢圓的方程;

(2)設(shè)線段的中點(diǎn)為,經(jīng)過的直線與橢圓交于兩點(diǎn), ,若點(diǎn)關(guān)于軸的對稱點(diǎn)在直線上,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)與短軸的一個端點(diǎn)是等邊三角形的三個頂點(diǎn),且長軸長為4.

求橢圓E的方程;

A是橢圓E的左頂點(diǎn),經(jīng)過左焦點(diǎn)F的直線l與橢圓E交于CD兩點(diǎn),求為坐標(biāo)原點(diǎn)的面積之差絕對值的最大值.

已知橢圓E上點(diǎn)處的切線方程為T為切點(diǎn)P是直線上任意一點(diǎn),從P向橢圓E作切線,切點(diǎn)分別為NM,求證:直線MN恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,直線過點(diǎn)且與拋物線交于,兩點(diǎn).

(1)求拋物線的方程及點(diǎn)的坐標(biāo);

(2)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

討論的單調(diào)性;

若在定義域內(nèi)總存在使成立的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案