【題目】已知函數(shù)f(x)=

(1)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;

(2)若函數(shù)f(x)在(﹣∞,1)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

【答案】(1); (2)[1,2].

【解析】

(1)根據(jù)題意,設(shè)t=x2﹣2ax+3,則y=logt,若函數(shù)fx)的值域?yàn)?/span>R,結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)分析可得:對(duì)于t=x2﹣2ax+3,必有△=(﹣2a2﹣12≥0,解可得a的取值范圍,即可得答案;

(2)由復(fù)合函數(shù)以及對(duì)數(shù)函數(shù)、二次函數(shù)的性質(zhì)分析可得,解可得a的取值范圍,即可得答案.

(1)根據(jù)題意,函數(shù)f(x)=log(x2﹣2ax+3),

設(shè)t=x2﹣2ax+3,則y=,

若函數(shù)f(x)的值域?yàn)镽,對(duì)于t=x2﹣2ax+3,必有△=(﹣2a)2﹣12≥0,

解可得:a≥或a≤﹣,

(2)設(shè)t=x2﹣2ax+3,則y=,

函數(shù)y=為減函數(shù),

若函數(shù)f(x)在(﹣∞,1)上為增函數(shù),

則函數(shù)t=x2﹣2ax+3在(﹣∞,1)上為減函數(shù),且t=x2﹣2ax+3>0在(﹣∞,1)上恒成立,

,解可得1≤a≤2,

即a的取值范圍為[1,2].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)不論取什么值, 函數(shù)的圖象都過(guò)定點(diǎn),求點(diǎn)的坐標(biāo);

(2)若成立, 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).

(1)若函數(shù)f(x)的最小值是f(﹣1)=0,且c=1,求f (2)的值;

(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),點(diǎn)為平面上動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,且.

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)過(guò)點(diǎn)的直線與軌跡交于兩點(diǎn),在處分別作軌跡的切線交于點(diǎn),設(shè)直線的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)C在橢圓M: =1(a>b>0)上,若點(diǎn)A(﹣a,0),B(0, ),且 =
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點(diǎn).線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點(diǎn)P(﹣3,0),直線l過(guò)點(diǎn)(0,﹣ ),求直線l的方程;
②若直線l過(guò)點(diǎn)(0,﹣1),且與x軸的交點(diǎn)為D.求D點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2x2﹣3x﹣9≤0},B={x|x≥m}.若(RA)∩B=B,則實(shí)數(shù)m的值可以是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】霧霾影響人們的身體健康,越來(lái)越多的人開(kāi)始關(guān)心如何少產(chǎn)生霧霾,春節(jié)前夕,某市健康協(xié)會(huì)為了了解公眾對(duì)“適當(dāng)甚至不燃放煙花爆竹”的態(tài)度,隨機(jī)采訪了50人,將凋查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

12

7

3

3


(1)以贊同人數(shù)的頻率為概率,若再隨機(jī)采訪3人,求至少有1人持贊同態(tài)度的概率;
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不贊同“適當(dāng)甚至不燃放煙花爆竹”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線

C:(y-2)2-x2=1交于A、B兩點(diǎn).

(1)求|AB|的長(zhǎng);

(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案