如圖所示,平面⊥平面,,,四邊形是直角梯形,,, ,分別為的中點.
(Ⅰ) 用幾何法證明:平面;
(Ⅱ)用幾何法證明:平面.
(1)利用三角形的中位線的性質(zhì),先證明四邊形ODBF是平行四邊形,從而可得OD∥FB,利用線面平行的判定,可以證明OD∥平面ABC;(2)利用平面ABDE⊥平面ABC,證明BD⊥平面ABC,進而可證平面ABDE;
【解析】
試題分析:(Ⅰ)證明:取中點,連結(jié). ∵是的中點,為的中點,
∴且, 又且,
∴,
∴四邊形是平行四邊形.
∴ 4分
又∵平面,平面,
∴平面. 6分
(Ⅱ)證明:,為中點,∴, 8分
又∵面⊥面,面面,面,
∴面. 12分
考點:線面平行,線面垂直
點評:本題考查線面平行,考查線面垂直,考查線面角,解題的關(guān)鍵是正確運用線面平行與垂直的判定與性質(zhì),正確運用向量法求線面角.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,平面∥平面,點A∈,C∈,點B∈,D∈,點E,F(xiàn)分別在線段AB,CD上,且AE∶EB=CF∶FD.
(1)求證:EF∥;
(2)若E,F(xiàn)分別是AB,CD的中點,AC=4,BD=6,且AC,BD所成的角為60°,
求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com