【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()
(結(jié)果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
【答案】A
【解析】
設(shè)蒲的長度組成等比數(shù)列{an},其a1=3,公比為,其前n項和為An.莞的長度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項和為Bn.利用等比數(shù)列的前n項和公式及其對數(shù)的運(yùn)算性質(zhì)即可得出..
設(shè)蒲的長度組成等比數(shù)列{an},其a1=3,公比為,其前n項和為An.
莞的長度組成等比數(shù)列{bn},其b1=1,公比為2,
其前n項和為Bn.則An,Bn,
由題意可得:,化為:2n7,
解得2n=6,2n=1(舍去).
∴n12.6.
∴估計2.6日蒲、莞長度相等,
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為.
(1)求過點且與圓相切的直線的方程;
(2)直線過點,且與圓交于兩點,若,求直線的方程;
(3)是圓上一動點,,若點為的中點,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且有,則不等式的解集為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線與直線垂直.
(1)求函數(shù)的極值;
(2)若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班進(jìn)行教改實驗.為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進(jìn)行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān).
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:K2=.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2是雙曲線C: (a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三學(xué)生共有800人參加了數(shù)學(xué)與英語水平測試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人的成績進(jìn)行統(tǒng)計,先將800人按001,002,…,800進(jìn)行編號.
如果從第8行第7列的數(shù)開始從左向右讀,(下面是隨機(jī)數(shù)表的第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 26
83 92 53 16 59 16 92 75 35 62 98 21 50 71 75 12 86 73 63 01
58 07 44 39 13 26 33 21 13 42 78 64 16 07 82 52 07 44 38 15
則最先抽取的2個人的編號依次為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知點A(5,-2),B(7,3),且邊AC的中點M在y軸上,邊BC的中點N在x軸上,求:
(1)頂點C的坐標(biāo);
(2)直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在奧運(yùn)知識有獎問答競賽中,甲、乙、丙三人同時回答一道有關(guān)奧運(yùn)知識的問題,已知甲答對這道題的概率是,甲、乙兩人都回答錯誤的概率是,乙、丙兩人都回答正確的概率是.設(shè)每人回答問題正確與否相互獨立的.
(Ⅰ)求乙答對這道題的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答對這道題的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com