已知數(shù)列中,點在直線上,且.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求
(Ⅱ)設,數(shù)列的前項和為,成立,求實數(shù)的取值范圍.

(1);(2).

解析試題分析:(1)將代入到直線中,得到之間的關系,易知是等差數(shù)列,根據(jù)等差數(shù)列通項公式,求出最后的;(2)利用(1)求出數(shù)列的前項和,代入到中,根據(jù)恒成立分離常數(shù),求出最終的取值范圍.
試題解析:(1)證明:由已知得,即
∴數(shù)列是等差數(shù)列,公差為
,∴
(2),∴數(shù)列是等比數(shù)列,且首項為2,公比為2

,所以
.
考點:等差數(shù)列通項公式的求法,等比數(shù)列的求和,恒成立問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列,的通項,滿足關系,且數(shù)列的前項和
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知an是一個等差數(shù)列,且a2=18,a14=—6.
(1)求an的通項an;
(2)求an的前n項和Sn的最大值并求出此時n值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前n項和為Sn,且.
(1)求數(shù)列的通項公式;
(2)令,記數(shù)列的前項和為.求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知各項均為正數(shù)的兩個無窮數(shù)列滿足
(Ⅰ)當數(shù)列是常數(shù)列(各項都相等的數(shù)列),且時,求數(shù)列的通項公式;
(Ⅱ)設、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個,而數(shù)列惟一確定;
(Ⅲ)設,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的公差,它的前項和為,若,且成等比數(shù)列.(1) 求數(shù)列的通項公式;(2)設數(shù)列的前項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,已知.
(Ⅰ)求;
(Ⅱ)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為正整數(shù))。
(1) 令,求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(2) 令,,求使得成立的最小正整數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,、、是平面直角坐標系上的三點,且、、成等差數(shù)列,公差為,
(1)若坐標為,點在直線上時,求點的坐標;
(2)已知圓的方程是,過點的直線交圓于兩點,
是圓上另外一點,求實數(shù)的取值范圍;
(3)若、、都在拋物線上,點的橫坐標為,求證:線段的垂直平分線與軸的交點為一定點,并求該定點的坐標.

查看答案和解析>>

同步練習冊答案