已知點在曲線上,為曲線在點處的切線的傾斜角,則的取值范圍是___________.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知 , 函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點處的切線的斜率為,問:在什么范圍
取值時,對于任意的,函數(shù)在區(qū)間上總存在
極值?
(Ⅲ)當時,設函數(shù),若在區(qū)間上至少存在
一個,使得成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((14分)設函數(shù)時取得極值.
(1)求a、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(16分)已知函數(shù),).
(1)若時,判斷函數(shù)上的單調(diào)性,并說明理由;
(2)若對于定義域內(nèi)一切,恒成立,求實數(shù)的值;
(3)在(2)的條件下,當時,的取值恰為,求實數(shù),的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知函數(shù))在區(qū)間上有最大值和最小值.設
(1)求、的值;
(2)若不等式上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)在R上滿足,則曲線在點處的切線方程是        ( ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知集合AB={x|x2-2xm<0},
(1)當m=3時,求A∩(∁RB);
(2)若AB={x|-1<x<4},求實數(shù)m的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與曲線相切于點,則的值為(     )
A.3B.-3C.5D.-5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無效)
已知函數(shù)f(x)=x3+bx2+ax+d的圖象過點P(0,2),且在點M(-1,f(-1))處的切線方程為6x-y+7=0.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案