【題目】設為偶函數(shù),且當時,;當時,.關于函數(shù)的零點,有下列三個命題:
①當時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;
②若,函數(shù)的零點不超過4個,則;
③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.
其中,正確命題的序號是_______.
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】吸煙有害健康,小明為了幫助爸爸戒煙,在爸爸包里放一個小盒子,里面隨機擺放三支香煙和三支跟香煙外形完全一樣的“戒煙口香糖”,并且和爸爸約定,每次想吸煙時,從盒子里任取一支,若取到口香糖則吃一支口香糖,不吸煙;若取到香煙,則吸一支煙,不吃口香糖,假設每次香煙和口香糖被取到的可能性相同,則“口香糖吃完時還剩2支香煙”的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點, ,動點滿足.
(1)求動點的軌跡的方程;
(2)若直線與軌跡有且僅有一個公共點,且與直線相交于點,求證:以為直徑的圓過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標準方程;
(2)若點M為的中點(O為坐標原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.
(1)當時,記,求的分布列及數(shù)學期望;
(2)當,時,求且的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了引導居民合理用水,某市決定全面實施階梯水價.階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標準如表:
階梯級別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) |
從本市隨機抽取了10戶家庭,統(tǒng)計了同一月份的月用水量,得到如圖莖葉圖:
(Ⅰ)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)X的分布列與數(shù)學期望;
(Ⅱ)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到戶月用水量為一階的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,動點與、兩點連線的斜率之積為.
(1)求點的軌跡的方程;
(2)已知點是軌跡上的動點,點在直線上,且滿足(其中為坐標原點),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)且
(1)當時,求函數(shù)在點處的切線方程;
(2)定義在R上的函數(shù)滿足,當時,。若存在滿足不等式且是函數(shù)的一個零點,求實數(shù)a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com